~ AD-R163 284 DSS (DECISION SUPPORT SYSTEM) DEVELOPMENT é;gﬁkff Rir ) 1/4
THE MARE ISLAND NAVAL SHIPYARD(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CR M F RALL ET AL. MAR 87

F/G 3/1




It \
g R -t
fofre
= L m N .
||||| A
= 18 L
li2S i s |
= iI= ==

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i




. MERE ST ()

~ NAVAL POSTGRADUATE SCHOOL
% Monterey, California

N

THESIS

DSS DEVELOPMENT EFFORTS AT
THE MARE TSLAND NAVAL SHIPYARD

7

AD-A183 284

by
Michael F. Rall

and
Richard N. Woodman

March 1987

Norman R. Lyons

Thesis Advisor:

Approved for public release; distribution is unlimited.

87 8 13 ogq

If'\-ﬂ
;gfi
A O D T e L e e e e e e )




|

RIS LN U LT ) Y VRS RERAE L NI S pUG kg i g

unclassified .
(] 4 ] (X1}

REPORT DOCUMENTATION PAGE

Ty
ta REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

unclassified

3 DISTRIBUTION7 AVAILABILITY OF REPORT
Approved for public release;

22 SECURITY CLASSIFICATION AUTHORITY

26, DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) $ MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE _SYM.OL 7a. NAME OF MONITORING ORGANIZATION
aval Postgraduate School (i applicable) Naval Postgraduate School
54
6¢c. ADORESS (City, State, and 2IP Code) 7b. ADORESS (City, State, and ZiP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
ot applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and 2IP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO NO NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

DSS DEVELOPMENT EFFORTS AT THE MARE ISLAND NAVAL
. SHIPYARD

TR
\J

'2 PERSONAL AUTHOR(S) pa11, Michael F. and Woodman, Richard N.

Master's Thesis

133 TYPE OF REPORT 13b TiIME COVERED

FROM TO

14 OATE OF REPORT (Year, Month, Day)

15 PAGE COUNT

1987 March 308

-

'6 SUPPLEMENTARY NOTATION

ceope

17 COSATI CODES

18 SUBJECT TERMS (Continue on reverse f necessary and «dentify by block number)

£.ELD GROUP $SUB-GROUP Decision Support System (DSS); budget develop-

ment and control

*9 ABSTRACT (Continue on reverse if necessary and identfy bé block number)
S

d0 O STRIIUTION/AVAILABILITY OF ABSTRACT

The mandate of a cost conscious (Congress and American people caused
NAVSEASYSCOM to commission a study to identify areas for improvement withi
US Naval Shipyards. Budget development and control was one area rw
identified. The focus of this thesis is centered on a single shipvard,
the Mare Island facility, detailing the budgeting operations of one of its
departments. The objective is to develop an initial pilot project, a
prototype Decision Support System (DSS), that will address the concerns
of budget preparation, control and variance analysis. Additionally, this
project assesses the feasibility of larger DSS efforts within the shipyard.
The methodology of the development was a blend of structured and typical
DSS approaches, providing flexibility with rigorous documentation. Further
effort toward integrating the findings of this thesis with the present
accounting system is recommended to expand the use of decision support

ey s . 3

21 ABSTRACT SECURITY CLASSIFICATION

X oncassieicounumiten O same as rer [Jornic usens unclassifie

220 NAME OF RESPONSIBLE INDIVIDUAL

220 TELEPHONE (include Ares Code) | 22¢ OFFICE SYMBOL

Prof. Norman R. Lyons (408) 646-2666 Code 54Lb .
D FORM 1473, samar 83 APR eqition may be used unti exhausted SECYRITY CLASSIFICATION OF TwiS PAGE .
All other edit:ons are Obsolete . s
unclassified
1 I
\f._
- s}‘t‘.- '*i.. - "J‘ - ‘-" .,;.J'-..'\J‘.\".q'.\ ‘-"-._'\- \*'\._\'_‘-'_\..'\ Y \..\ \,\ . .‘-..\-P\ o \.\...-"h.-'. o AR e \.- '. _\.“‘...- DA \.-



Approved for public release; distribution is unlimited.

DSS Development Efforts
at
The Mare Island Naval Shipyard

by
Michael F. Rall
Lieutenant, United States Coast Guard
B.S., United States Coast Guard Academy, 1981 -
and
Richard N. Woodman

Captain, United States Marine Corps .
B.A., St. Lawrence University, 19

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the
NAVAL POSTGRADUATE SCHOOL
March 1987
ﬁ%(é’ °
Authors:
chhael F.Rall
444%%««/
chard N. Woodman
Approved by: /] YN
" No . Lyons, i/hesis Advisor
4
u&ﬂeconﬂ Reader

UM V0 /]

Willis R. Greer Jr., Chairman, /
Department of Administrative Science

Dean of lnformauon and Policy Sciences—\
2

-, A SR S A A A St Sl ot




\ “
| ABSTRACT B

J i
The mandate of a cost conscious Congress and American people caused ;
NAVSEASYSCOM to commission a study to identify areas for improvement within ;
US Naval Shipyards. Budget development and control was one area identified. The X
focus of this thesis is centered on a single shipyard, the Mare Island facility, detailing 8
the budgeting operations of one of its departments. The objective is to develop an N
initial pilot project, a prototype Decision Support System (DSS), that will address the )
concerns of budget preparation, control and variance analysis. Additionally, this ¥l
project assesses the feasibility of larger DSS efforts within the shipyard. The &
methodology of the development was a blend of structured and typical DSS 'ﬂ;
approaches, providing flexibility with rigorous documentation. Further effort toward "
integrating the findings of this thesis with the present accounting system is £
recommended to expand the use of decision support within the shipyard. N e -3
. , T, P K - - el U

‘f")’/"; _ . //_"7 / o s, /,e,.;.' ) ) I W ; Mo Y . v P m\fo verddl (ﬂ »’«'-‘3 / E

g ‘ } J , I N :’
L}ccessipn For - A R 2. ﬁ;; ., f
NTIS GRAXI g L . !

DTIC TAB s 3
Urrnnomced O ]

‘ Justification — ——— ):\
e = \J

{ BY t‘
pistritutton/ b

| Availability Codes o

= 7777 \Avall end/or K
st Special . "

o

Al ‘ N~ =

AT,

-,
ot

. - TR LV PR e
ToTy! NG OG0 "\' )N > " AU AN M A P '.“.- R I .' Lo ust J..f f. LN
LoV AN RS i s X g : A ’




THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.



IL

Il

TABLE OF CONTENTS
INTRODUCTION ...ttt iiiiiiiiietienenencrsoasensecanseenas 15
A. BACKGROUND ......ciiitiueinrnsesnncoreesennnnosanans 15
B. OBJECTIVES ......ciiiiitieennanisnnernsssssrsennossenes 16
C. RESEARCHOQUESTIONS .....coivtiierrnnnnnnennsncsnnnnes 16
D. SCOPE AND LIMITATIONS .....ovuuenneenneenneanneennns 16
E. LITERATURE REVIEW AND METHODOLOGY ............. 17
1. Literature Review............. S P 17
2. Methodology ....covvvviriiiiinneeirenecnncnannsnnenns 18
F. SUMMARYOFFINDINGS .....cciiiiiiiiiiiiiiiiiinnnannn 18
G. ORGANIZATIONOF STUDY .....iiiiiiiiiiiiieiniennnnn. 18
BACKGROUND ...ttt ittt iiiiinneeieinenanaranenns 20
A. THE COOPERS AND LYBRAND STUDY .........ccevnnnnn. 20
B. COST CLASSIFICATION ....coiiitiiiirneecrnnccnnescnnes 22
¢ DHGEASENIYRIQRURCET CONTROLAND . 2
D. SABRS ... i i it ittt et 26
FRANEWORK EY o AND THEORET AL . 28
A. DSSDEFINITION ... ittt iiiieinaennans 28
B. DESIGN AND IMPLEMENTATION . ..........cooiiiientn 28
l. Structured Approach ..............ciiiiiiiiiiiinnnnen, 28
2. DSSApproach ....... ...ttt ittt 29
3. ProblemDefinition ........... ..ottt 30
4. Strategic DSS Development .. ...... .. ... ... .. ... ...... 30
5. Tactical DSS Development ...............coiivinninann.. 31
6. ADSSActionPlan ............0iiiiiiiiiiiiii i 31
T ROMC i i it it e et e e 32
C. AREASOFDESIGN . ... ..ottt ittt 33




V1.

I. UserDesign .....covitiiiiiiiieiiirnernnrassasanacanes 33

2. SystemiInterface..........ccciiiiiiiiiriiieiiiiieniiannn 33
3. DataBase Management ..........c.cccvvvuivrcnennsencans 4
D. ENVIRONMENT ........................................ 34
1. Attitudinal Direction and Requirements ................... 34
2. Developmental Requirements ................cccoiven.en, 35
3. DSSPrototyping .....ccoiveeitirranecncensrnnroneanens 35
4 UserEducation ..........ccccietniveenenccnccrnccnsannes 35
S. SupportforDSS ........cciiiiiiiiiiiiiiiiieiiannieaans 36
E. FINALWORDS......citiiitiieriererececncansssnsanesanas 36
METHODOLOGY ... iiiiiiviiterreceesenessosenscassasssssnnns 39
A. INTRODUCTION ... iiiiiiiiitiiiinencennsreniennnaennns 39
B. ITERATIVEDEVELOPMENT ......c.iviiiiiiiiiiennnnnn.. 40
1. ProblemDefinition ...........civiiiiiiinininenann, 40
2. Structured Techniques .............coviiiiiiiiiiiennn.. 41
3. DataBaseDevelopment ............ccoviiiiiiiinnninn.. 44
PRESENTATION OF THE PROTOTYPE RESULTS ............... 46
A. REQUIREMENTS DEFINITION .....c.ovvivtiinennnnnnnnns 46
1. Cost Center Analysis (Minicomputer) ..................... 46
2. Cost Center Analysis (microcomputer) .........ccevvinnnns 52
B. GRAPHICSMODULE ..... .ttt iiiiieinninens 58
I. TEL-A-GRAF ... ittt iaeiiananes 59
2. Graphics on the Microcomputer.................. ... ... 66
O 0 7 N0 17 N 67
1. Data Base on the Microcomputer.............ccovvevernnnn 67
2. HistoricalDataBase ...........c.coviviiinnneencnnnnsss 68
3. DataBase Design.........ccvoiiiiininnrorenennnscnannns 68
INTERPRETATION OF THE DEVELOPMENT EFFORT .......... A
A. ANALYSIS OF THE METHODOLOGY ...........cccvvvnnnn. 1!
I. Documentation .............coieiieiriinineaencennnncnns 72
2. lterative Approach...........c.oiiiiiiiiiiininneiennnnn. 72
3. CommuRICAtioN .. ..o i ittt e e 73
6

--------

g Y, W



AAAAA

4. Remote SiteDevelopment ...........ccovviiiiiienienans. 74

B. RESULTS FROM CCAPILOTPROJECT .........ccvvvevnnnn 74
1. DataBaseDesign.........ooiiiiiiiiininiiinnnnnnnnnnss 75

2. Longterm Data Base Considerations ...................... 76

VIIL CONCLUSIONS AND RECOMMENDATIONS ........cccvvvvnn.. 77
A. CONCLUSIONS . ..iiiitiiettitercnneranseeaneeennseennns 77
B. RECOMMENDATIONS .....iitiiiiiiirreetntnnnnennaannns 78
C. SUMMARY .. iiiiiiiiernerosereresecssseoneacenscsaneas 80
APPENDIX A: STRUCTURED SPECIFICATION ........cvivveennnnnnn.. 81
1. DATAFLOWDIAGRAM ......0iiiiiitrencnntncenncnannns 81
2. MINISPECIFICATION ... iiiiiiiiniinstanenncennnonsonnns 81
3. DATADICTIONARY ....ittiiiuinrnnrrereoarancanannannns 84
4. AUTOMATED DATADICTIONARY .....covvviiiinnnnnnnnn. 99
2. Method ... ... iiiiiiiiiiiitieiitactnennnennaranenns 99

b. Data Representation .......coovveiiirinnenennenennnnnnn. 99

¢ DataMaintenance ..........ccoviiiiienenrenennenennnn. 99

d. Data Security .......covvtiiiitiiieriiterneneeaneeaann. 99

e. Back-upandRecovery..........ciiiieiiiiiiiiniiinnnns. 99

f. BudgetTableStructure .........covvviiierennnnnnnnnnn. 100

g8 Expense TableStructure .........cccivviieinnrnnennnnn. 101

h. SystemFiles .........ciiiiiriiiiiitiiiie i, 102

i Programsand Modules ..............cciiiiiiiiiinnen. 104

jb DataElements .............cc0iiiiiiiiiiiiiennnn. . 108

k. System Element Hierarchy ..................coiiii... 111

S, UFIFILES ...ttt iitienaneotonnesnnneennnns 115
2. BUDGET.UFI .. ... i iiiiiiiiiiiiiiitiiieennnennnnn. 115

b. EXPENSE.UFI ... iiiiiiiiiiiiiiiteinnnnnennnnnns 116

APPENDIX B: COST EEN’T R ANALYSIS USER MANUAL
(MINICOMPUTER) ..o 124

. INTRODUCTION ....oittiiiiiiiiiiiiiiiiiiteaaanennn, 124
22 REQUIREMENTS ... ciiiiiiiiiiiiiiiiiiiiiiiiinneeenns 124
3. STARTING THESYSTEM .......cciiiiiiiiiinnnnnnnnnn. 124

PENETE



"4, MAINMENU .. .itiiiiiiiiiiireetnraccssessensnnenansnns 124
5. CHOOSECOSTCENTERMENU.........ciivviiivenniann. 126
6. GRAPHPLOTCODEMENU .......iciiviieiiiiiennnnnnnn 126
7. PLOTOPTIONS MENU ....ciiiitiiiinrennerenncennnanns 127
8. ENTERTEL-A-GRAF ....itiiiiiiiiiiiiiitnnenenennnns 128
9. USING T TEL-A-GRAF ... ..ciiiiiiiiiiiiittaaeninanaenennns 129

a. Making YourOwn Data Files ................ccvvvnnen. 130

b. TEL-A-GRAFCommands ...........coiiieuvrinnnennns 132
AP G R OB ER) Yo T AL 135
I. INTRODUCTION ... it titiiitnirnieniacnnereenaranennns 135
2. REQUIREMENTS ... iitiiiiiiiieniernerneeanencennennss 135
3. STARTINGTHESYSTEM .......cciiiiiiiiiiiiininnnnnn, 135
4  MAINMENU ... ittt iitiititeiniienanenens 136
5. INFORMATION AVAILABLE .............iiiiiiiiinat, 137
6. BUDGET VSEXPENSES .....oiiiiiiiiiiiiiiiiennnnnnnn. 137
7. TOTALBUDGET VSEXPENSES ...... ..., 138
b BRSERAQEXPENSES (HOUR LABOR MATERIAL 1
9. JOB ORDER INFORMATION MENU ...............c00l. 140
10. JOB ORDER NUMBER INPUTMENU .............. ..., 140
11.  COST FUNCTION INPUTMENU ...t 142
12, COSTCLASSINPUTMENU .....oooviiiiiiiiiian, 142
3 GRAPHICS ... it i it ittt 142
4 BRHQRAFRATES, DELETIONS MODIFICATIONS
a. Introduction ..........cciiiiiiiiiiiiiiiiiiiiiiiiae, 148

b. Gettinginandout ..........ccciiiititrerencnceonannns 148

¢ AdHocQueries ..........ciiiiiiiiiiiiiiiiiiiiiiaea, 148

d Joins . e e 150

e. Mathematical Manipulations ................ ... ... 150

£ Group By ...t e e 151

g SubQueries ........iiiiiii i i et 152

h. Updates .......... i, 153




L

i Deletions .......coiiiiiiiiiiiiiiiiiiiiiiiiiiiiienaes 153
b Modifications ..........ci0iiiiiiiiiiiiiiiiireiaanans 154
K Other Goodies .......oovveuvnrnnrnennenenennennnnenns 155
L Editingin UFI ...... . ittt iieinnennes 156
™ AR QL) 0d SQL Commants o Command
APPENDIXD: (R ANRITERiA-GRAT PROCRANS FOR PRIME
CPLPROGRAMS ... iiiitiieitnneiennosioncnsoncananns 159
T 2 U 0 - 159
L 0 I X 0 - 159
LI ) 9 ) - 160
L 0 3 D - P 160
e MANTEL.CPL ... ... iiiiiiiiiiiiiiiiiiinerenennnn, 160
O 0 O - 160
8 DCC.CPL ... ittt iiietireintneseconnesonaeenns 161
he VCC.CPL ... it ittt eiteeennneennnenn. 161
L SPLT.CPL ...ttt iiitennnsnnennannnns 161
Jb o DPLT.CPL ... iiiiiiiiiiietieieinrneransananssnannnns 162
| S o T 00 - 162
L SPLO.CPL ... iiiiiitiiiiiiintecnneetoneanonananns 163
M DPLO.CPL.......iiiiiiiiiiiiiiiotesennnneeenaannnns 163
n. VPLO.CPL ... it it it 164
0. OPTEL.CPL ... ittt iiitertanennnsannnnens 164
P- FREE.CPL ... i ittt iieeiiineenannnn. 172
G SINGLE.CPL......iiiiiiiiiiiiiiiiiiiieiinnecnnnnenn 172
. DOUBLECPL ......iiiiiiiiiiiiiitinnntonneconanenns 172
S. DOUBAR. CPL .......iitiiiiiiinrennenenranennnnnnns 173
t. TRIPLE.CPL ...... ... ittt iiienaennn 173
u QUADCPL ................ e e e 174
TELL-A-GRAFPROGRAMS .......coiiiiiiiiinineennnnn.. 174
a. TAGPRO.DAT: Tell-A-Graf Profile File . ................. 174
b. Bl:BarChart ForBudget ...........coivvirninnnnennn.. 175
¢. EX2:Plot of Budget vs Expense ..................c.c.o.... 175

P AN AINE W 1 PG LA AT T LS AT T T TR T TR T AT e



3
d. EXI112: File Appended to EX2 For 9112 ...........uu..... 176 i
e. EXI113: File Appended to EX2 for 9113 ......covevnnnnnn.. 176 g
f. EXI114: File Appended to EX2for 9114 ................... 176 9
g EXI1S: File Appended to EX2 for 9115 .........euunnn.... 176 "
h. EXI116: File Appended to EX2 for 9116 ................... 176 ’
i. EXI117: File Appended to EX2 for 9117 ................... 177 v
j. EXI118: File Appended to EX2 for 9118 ................... 177 ;
k. EXI119: File Appended to Ex2 for 9119 .............. ..., 177 Y
L B4: Triple Bar Chart, Budget, Budget %, Expense .......... 177 ;
m Bl12: Appends B4for9112........coiiiinniiiiiinnnnn, 177 Y
n. Bll3: AppendsB4for9113 .........ciiiriiiiiiiiinnnnn, 178 :
0. Blld: AppendsB4for 9114 ......coivnvnenvnenensvnnnnn. 178 :
p- Bl15: Appends B4 for 9115 ....o.vvvriinrnnannenenennnn. 178 )
q. B116: Appends B4 for 9116 ....... e, 178 0
T. BlI17: Appends BAfor 9117 ..vuvnvnrninennenenenenennns. 178 ,
S. BU18: Appends B4 FOr 9118 . nvnvenrnrnenennanannnnnn, 179 A
t. Bl19:AppendsB4for 9119 ...cuvviiirnininnnnnnnennnn. 179 o
u. PERBAR: Bar Chart Percent Expended ................... 179 y
v. NORBAR: Bar Chart Normalized for Elapsed Time ......... 180 Y
w. -VARBAR: Bar Chart Variance in Dollars ................. 180 p
x. PERVAR: Bar Chart Percent Variance ................... 180 S
Y. Bl10:Data File for Bl .....ouveunnennniannnennnannnnnn. 181
Z. BEI10: Data File for EX2 . uuurrnnnneeennaeenennnns 181 S
aa. BBE110: Data File for BA ........uvnvveeeeeeeennnnnnn.. 181 o
ab. PB110: Data FileforPerbar ............ccovuviinnnn.n. 182 '
ac. NB110: Data Filefor Norbar ..........cccivnvivnennn.n. 182
ad. VBl10: Data FileforVarbar............ccciviiivunnnnnn. 182
ae. PV110: Data File for Pervar ........... e eeneieeeaannns 183 .‘
APPENDIX E: C PROGRAMS FOR THE MICROCOMPUTER ........... 184 N
B o o7 W o 184 )
2. PROJAC .eveee e e e, 208 p
3. ORCAINP ...ttt et e, 282
4. BAR C . 284 &
)
»
10 ]
&

LN MR N W W R LIPS P IS P ._-‘\\._\‘-‘--'-\_'\.‘ ..... \.'&
o A N i o e R A A A N A A A N N A A O



' LIRS ) o ) o o RN 288
| PR o0 1.7 { - [0 X oJ S 293
| 7. TRIPBAR.C .« ot ititeeteeeenneeeeeeaneesennaneeeeannnees 300 3

|
| LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

’0
s
1)
........................................ 307 )
¥
1]
'

m.:r.cm.-c{’,myu g




LIST OF TABLES

e e

L COST FUNCTIONS .+ e, 2 .
2. COST CLASS - v v i, 23 ~
3. AUTHORIZED COST FUNCTIONS/COST CLASSES Y = o

AUTHORIZEB ‘R T RN A TN R pCLASSES Y = . 24 ;
4. TOP LEVEL DATA FLOW DIAGRAM .. vvoeneeeeeaeennnns 82

5. FIRST LEVEL DATA FLOWDIAGRAM ..........cciiiiiiiiiiennnne. 83 ]
6. SECOND LEVEL DATA FLOW DIAGRAM OF PROCESS 1.0 ....... ....84 '

- - -

"3

- 3oy

12

0 % W_V B2




.
;‘. 3.1
‘ 5.1
{ 5.2
| 5.3
§ 5.4
!:. 5.5
G 5.6
| 5.7
'!
" 5.8
L 5.9
" 5.10
. 5.11
‘ B.1
B.2
B.3
N B.4
)
" B.5
d B.6
|l
» B.7
Y - B.8
-, B.9
! B.10
1
g C.2
; c3
. C.4
C.5
¢ C.6
)
)
)
1)

N T J P T A N

P v opie @ et at Fe® 8, U0 ¥4 202 1§ o°8 '3 2" [NANEANS RN AN N AU L yire NEEFREYE LS "FNAN"RIFIALELY AR

LIST OF FIGURES
DSS Components (Functions) .........c.covtiiiiiiiiiiniiinninenenns 37
Structure Chart of CCA (minicomputer) .....oovvveitinenraeeronsnanns 47
Continued Structure Chart of CCA (minicomputer) ...........ceovevenn. 49
Continued Structure Chart of CCA (minicomputer) ..........cccovuvnnnn 50
Hierarchy Chart of CCA (microcomputer) .........c.ceeveeeoroncoonens 54
Continued Hierarchy Chart of CCA (microcomputer) ...........c00venn. 56
Composite Graph, Bar Chart and Plot of Budget VS Expense . ............ 59
Sample TEL-A-GRAF Profile File . . .......ooiiiiiiiiiiinennnnennnns 60
TEL-A-GRAF DataFile ...................... et eiie e, 62
Triple Bar Graph for Cost Center 9110 ..........ciiiiiiiiiiinnnrnnsn. 63
Four Graphs for Variance Analysis ...........c.o0iiiiiiiiiiiiiiinnn.. 65
Data Base Design Bachman Diagram .............cciiiiiinninnnnen.. 68
CCATopLlevel Menu .........cciiiiiiiiiiiiiiiieinenninnnennens 125
Prompt for the USer's reSPONSe ... ..cvvvvieriinornraarssssronscansss 126
Prompt for the user's response ........coveivnieirnerncracseccrannsns 127
Plot Code Selections .........coiiieeinernereronensrssncnnsnsnnsss 128
Plot Option Selections . ........coiiiiiiiiiiiiiiiiiiiiiininenn. 129
Completion QUeTY ... ii ittt ittt eaaereeanennaannenneenas 129
TEL-A-GRAF Data File for Triple BarChart ...................c.... 130
Name of Data Files Matched With the Appropriate Graphs ............. 131
Graphic Program Module Relations .......... ... o iiiiiiiiinnnnnnns 133
Interactive Session with TEL-A-GRAF ..........cciiiiiiiiiiiinnnnn. 133
Cost Center Analysis Main Menu .......ccoeviiiineneincneeesnnnnens 136
Information AvailableeMenu ..............ciiiiiiiaaa., R, 137
Budget vs Expenses Menu ........ ... i e 138
Total Budget vs Expenses Menu .........coiiiiiiniirirneennnnennns 139
Budget vs Expenses by Hour, Labor, Material or Other................. 139
Job Order Information Menu .........iviiiiiniiininirenneennnnnns 140
13

A A Y

SARE



C.7
CS8
C9
C.10
c.1
C.12
C.13
C.14
C.15

Cost Function Number Input Menu .......
Cost Class Number Input Menu ..........
Job Order Number Input Menu ...........
Single Budget Bar Graph ................
Plot of Budget and Expenses .............
TripleBarGraph ................cvuntn
Plot of Budget and Expenses with Bar Graph Overlayed
Allowable Modifications of Graphs ........

Output of Using the GROUP BY Command

14

-------------------------




L INTRODUCTION

A. BACKGROUND

In past years, Naval Shipyards operated in a “Zero gain/zero loss” mode. That
orientation is rapidly changing. The thrust of this change is that Defense Department
managers must be concerned with costs. In keeping with this spirit,
NAVASEASYSCOM commissioned a study of US Naval Shipyards to identify
functional areas needing improvement. The contracted analysts investigated all areas
of the shipyards and found numerous problems. In the MIS systems area it was found
that the central system was behind technology and producing poor management
reports.

Budget development and control was also found to be lacking. In the past there
was little incentive to be concerned with budgets, since cost was not a critical concern.
But budget preparation is particularly important in maintaining control of costs. There
will be little improvement uniess a budget and expense monitoring capability is
provided for the shipyard managers. In light of these concerns and developments,_this
study undertook to develop and investigate the feasibility of a Decision Support
System (DSS) that would assist managers at the shipyard with budget preparation and
control. Additionally, the specific methods of cost classification at Naval Shipyards are
discussed. These classifications are by Cost Center, Cost Function, and Cost Class,
and are the vehicles by which costs are portrayed.

Within the Management Engineering and Information Office (MEIO), at the
Mare Island Naval Shipyard, budget development and control is performed by the
department budget analyst with inputs from the department managers. Departmental
budgets are presently developed annually. The primary budget process inputs originate
from the Comptroller with additional inputs from within MEIO, although these are not
farmal inputs.

Budget analysts are also responsible for providing responses to ad hoc queries
from the shipyard and department managers. Those queries can come in the form of
requests for cost accrual analysis to investigations of variances the managers feel may
be potential problem areas.




W,

‘The Shipyard Automated Budget Reporting System (SABRS) is a new addition
to the shipyard's accounting systems. It will allow in depth cost analysis, and
assistance in the preparation of budgets. Presently, not all of its features are

operational.

B. OBJECTIVES

The primary objective of this thesis is to develop an initial pilot project, a
prototype DSS, that will initially address the concerns of budget preparation, control
and variance analysis within the Mare Island Naval Shipyard. In addition, it is
intended that this DSS will be the first step in a larger effort to provide managers
access to an easy to use, graphically oriented, and organization-wide system. With
these objectives in mind, the final objective will be to assess the applicability of larger
DSS efforts within the shipyard.

A byproduct of the project will be to provide understanding and insights into the
use of programs that are on-hand at the shipyard and incorporated into the DSS. We
feel that, in the past, most organizations have had a tendency to go for the salesman’s
hype, rather than exhausting the possible capabilities of present systems first. The
hope is that the users will at least be given the tools with this DSS to further explore
on-hand programs.

C. RESEARCH QUESTIONS

The most important question to answer in this research is, what is the best
method to integrate the available tools to produce a coordinated, specific DSS? The
insights gained from this effort will identify the best way to develop future DSS’s.

Secondly, we attempted to investigate the most efficient methodology of svstem
development. To do this we followed the iterative approach identified by Keen, Scott
Morton [Ref. 1] and Sprague and Carison [Ref. 2]. Also, we elected to use the
“structured techniques” of Yourdon [Ref. 3] and De Marco [Ref. 4] where applicable.
The structured approach is more rigorous in its requirement for documentation. This
will be prove to be beneficial for the users in enhancing their understanding, and for
later developers conducting maintenance and expansion.

D. SCOPE AND LIMITATIONS

We approached this project as a prototype, an experiment to determine the
applicability of a DSS to shipvard-wide decision support for management. The intent

16

R P B N I N A N A A R N R N A A N N A S AN N NN AR



was to learn from this experiment, refine the results, and subsequently expand the
system. In effect, this project was a feasibility study.

In order to meet the requirements of resources and time, the scope of this project
was limited to the budget analysis and control requirements of MEIO. This fact does
not diminish the information to be learned.

The DSS was implemented on two systems: a PRIME 9755 minicomputer which
is linked in a shipyard-wide Local Network and a standalone IBM microcomputer
configuration. The requirement to use the PRIME was a limitation because it required
us to learn a new system and language. It was also an opportunity since any useful
systems developed could easily be used by any other department on the Local
Network. Additionally, as mentioned earlier, the minicomputer implementation made
use of programs presently available at the shipyard. The resource constraints and the
experimental nature of this project precluded purchasing software that would meet the
needs of shipyard managers.

The portions of the project written by the authors were done in PRIME’s
Command Processor Language (CPL) for the minicomputer and C for the
microcomputer. They allowed the use of structured programming techniques and
constructs, which we felt were essential to producing code with minimal errors. Both
of these helped to support the rapid development approach required with the iterative
prototyping methodology.

E. LITERATURE REVIEW AND METHODOLOGY
1. Literature Review

In an attempt to clarify the term DSS, a literature review was conducted to
provide a general definition based upon those suggested by the key investigators in this
area of research. DSS, as opposed to MIS, attempts to work in the vague arena of
unstructured problems. To highlight the differences, the “structured techniques™ were
compared to the usual DSS development approach. In certain ways, we noted some
parallels and similarities. An important parallel is seen in the logical first step of each.
The structured approach looks at problem definition, the DSS approach to the
identification of a key decision. Those starting points provide the scope within which
the project developments take place.

The authors we reviewed stressed the importance of organizational approaches
to DSS development strategies. Integrating DSS to the organization requires careful

17

. “ e . . . - e ey ey e, e BT e e S Lt N NN -.\\\\'.\\'-\-\\
BONTE T L S T AT D NN NN TN NV SN L AL NN N RSP N AN S P

L AR S S A SV

XA

.,

I
o



planning. The technology levels, the appropriate tactical option, and a coherent
“action plan” for DSS must be carefully selected. The hygiene issues facing a DSS
development are critically important to the success of the system. These environmental
issues require close consideration by any would-be developer.

In conducting the analysis for a DSS, we highlight one proposed by Sprague
and Carlson [Ref. 2]. It is an alternative pattern of analysis which is different than the
usual systems analysis methods, in that it is process independent and not data driven.

2. Methodology

The development effort of this thesis was a blend of structured and DSS
approaches, using each where it was most logical. This provided us with a very flexible
methodology. The cornerstone was “iterative development,” which was the cement
that united the two disparate methodologies we incorporated.

Our goal was to have the flexibility of the DSS approach, but retain the
rigorous documentation standards of the structured techniques. Therefore, we used the
structured techniques within the overall framework of the DSS approach.

We also identified the need to include data base development requirements
within our methodology. The data base is important to the operation of DSS svstems,
so those issues should not be ignored.

F. SUMMARY OF FINDINGS

The methodology we selected provided us with a flexible, but rigorous
development environment. This would essentially equate to the prototyping approach
mentioned by Yourdon [Ref. 3]. For DSS, the slack produced by this methodology is
essential because of the vague nature of unstructured problems.

We also found that the structured techniques that are actively emploved within
the general DSS framework were absolutely necessary to ensure that sufficient
documentation was developed with the prototype system to assist future development
efforts. In fact, the techniques fit very well with the DSS approaches we identified.
Both sides of the coin are needed. The biending rests clearly with the iterative nature
of DSS approaches. Without it. the reconciliation between the dissimular approaches
could not be bridged.

G. ORGANIZATION OF STUDY
Chapter Two presents the background on the Mare Island Naval Shipvard and

its present svstems. The reader is given an appreciation of the problems {acing the

18

KRN ) _‘.-\.._..._.- e ter _..‘_.. . _"._ "'I\("I\-'."'-.’ .
FOC AN PPN AT A AT AN N A LAY,



fffff

shipyard managers and how our project is an attempt to deal with one area: budget
preparation, control, and variance analysis.

Under the framework identified by the background, the issues concerning DSS
development in the current literature are discussed in Chapter Three. This presents the
current understanding of the role of Decision Support Systems, and provides a specific
definition.

Refining the general issues further, Chapter Four presents the methodology we
followed in our development effort. This methodology is an outgrowth of the areas of
4 importance identified during the literature review and the background study.

3 Chapter Five presents the pilot projects which we developed, defining specific
: design issues we faced. Chapter Six develops an analysis of the projects presented in

Chapter Five. We focus on lessons learned and identify key areas of concern for future
. developers.

. 19




II. BACKGROUND

A. THE COOPERS AND LYBRAND STUDY

During 1985, the Coopers and Lybrand accounting firm conducted a
management analysis of all US Naval Shipvards. The scope of the analysis consisted
of all functional areas of shipyard operations and management.

In the MIS arena, they found that the central system is woefully behind
technology. It produces reports which are not timely and are marginally useful.
Additionally, NAVSEASYSCOM gave little direction concerning the growth and
acquisition of the hardware and software components of computer systems for the
shipyards. Consequently, both external and internal incompatibility resulted.

Budget development, execution and control were also found to be lacking. In the
past, managers had little incentive to keep budgets under control since cost was not a
critical management concern. The present budget concerns of the Congress and the
American people have resulted in the need for all government agencies and activities to
take a closer look at the management of their operations, and take the necessaryv
actions to rectify situations where resources are wasted.

As stated in the Coopers and Lybrand report [Ref. §: p. FIN-21}:

“The (present) budget process does not support meaningful variance analysis.
Several factors contribute to this problem:”

‘l}e budget is perceived by manv shipyards as a funding tool and is not
effectively used as a planning and céntrol tool.

The budget loses credibility as an effective management tool because it does not
agequately account for t‘-‘e impact of changes in demand. It is not capable of
effectively supporting analvses of spem?mgl and volume vanances, particularly at
the department of responsibility center levél.

Specifically associated with managing costs in the shipvards was the lack of
sufficient incentives “for departments to come in under budget.”

The budget is v Eve_d as a spending limit, not a spending target...The N\IF budget
policy manual f,et. 6] even states that ‘the budget 1s a plan of the activity to
attain a cumulative no gain no loss position at the end ot the budget vear. The
manual savs turther that ‘the established overnead rates should be developed...so
that zero balance varniance between actual and applied_overhead is acnieved at
year end to avoid the requirement of distribution thereol™.

20

I T I S N WL PN S L N N W R N SN SN S W ~
CAC LA POAC AL AU, ACALE AL A AL AR AL AL A AN N I ACACRC AR RS/



This attitude encourages deFartment managers to spend to their budget limits
because they believe that [avorable budget variances frfequentlY result in a
reduction 1n subsequent budget allowances. e the financial systems are

capable of 1solatmg or perfo nce, they are not e ecnve a} identifying and
rewarding goo rmance. e manager who does have a avorable budget
varjance, not o 3 does not get favorable recognition, but may also find himself
with reduced funds the next fiscal period

Budgets were prepared quarterly or annually before the study was initiated. The
management analysts of Coopers and Lybrand were concerned by this practice. They
believed monthly budget preparation would improve the quality of the planning
process [Ref. 5: p. FIN-17-18].

“Departments are not required to justify projected costs in sufficient detail.
Projected costs are not based on key activity indicators.” [Ref. 5: p. FIN-18] Managers
need some method of analyzing various costs in order to analyze variances, to project
future budgets and to defend those budget projections. They need performance
measures or indicators to chart their current status.

The study also reported that managers were not generally involved in the
preparation of their departments’ budgets. “Since these managers lack a sense of
ownership for the budget, it loses some of its effectiveness as a motivation tool.”
[Ref. §: p. FIN-19]

Budget effectiveness was reduced because of the poor quality of budget
submissions. Many budgets required later revision. “In addition, shipyard
management emphasizes total departmental control points. Little emphasis is placed
on adherence to the budget on a line item basis. For example, an analysis of the vear
‘end actual versus budget report for a shop in one shipyard identified by the study
[Ref. 5: p. FIN-20]:

1. Six line items with expenses up to $107,000, but no budgeted amounts.
Izw‘r‘esl\beoo .items with ranges of favorable budget variances, from $3000 to

3. Thirteen line items with unfavorable budget variances from $1000 to $142,000.
Budget variances are determined bv comparing budgeted amounts to actual
expenses. [f the actual expense is less than the budgeted amount, a favorable variance
exists. An unfavorable variance occurs if the actual expense is greater than the
budgeted amount. Unfavorable variances are to be avoided.

v Y



B. COST CLASSIFICATION

Two important means of classifying costs are by Cost Function and by Cost
Class. Cost functions group costs into functional areas. Each Cost Center, which is
equivalent to a department, has several Cost Functions under it, depending on the
nature of its work. For example, the MEIO is Cost Center 9110. Under its control are
eight Cost Functions designated numerically from 9112 to 9119. Table 1 shows the
names of these Cost Functions.

TABLE 1

COST FUNCTIONS
9112 Administration
9113 Administration
9114 Rental and Maintenance of ADP Equipment
9115 Operations
9116 Control and Scheduling
9117 EDP Operations
9118 Key Entry Operations
9119 NAVSEA NSY MIS Program

Each expense incurred by MEIO falls under one of the listed Cost Functions.
The sum of the expenses of all Cost Functions under a Cost Center is the amount
expended by that Cost Center. Cost Functions relate to Resource Management
System functional/subfunctional categories defined inthe Navy Comptroller's Manual
[Ref. 7].

Cost Class is another way expenses are classified. A Cost Class is the
identification of the type of an expense. They relate to elements of expense, under the
RMS system, “which tell what kind of resources are used [Ref. 7J.” Each Cost Center
has certain authorized Cost Classes. MEIO, for example, is authorized 21 different
Cost Classes under which it may spend. Table 2 lists the authorized Cost Classes for
Cost Center 9110.

22

A - -

PP PRI




TABLE 2 .
COST CLASS

02 Supervision, Graded :

03 Non Supervision, Graded X

04 Non Supervision, Ungraded ]

10 . Lost Time .

11 Time Allowed

12 Consumeable Supplies

19 Coding Rejects

23 Union Activities \

28 Alterations

30 Travel \

32 Rent and Communications

33 Printing, Reproduction, and Duplicating '

39 Training, Other T

43 Depreciation of Purchased Equipment '

54 Shop, General Non Labor "

68 Acquisition of Minor Property

91 ADP Supervision

92 ADP Analyst/Programmer ‘

93 ' ADP Operations

94 ADP Rent/Communications

95 ADP Maintenance .

96 ADP Contractual Services 3

97 ADP Consumeable Supplies and Installation \

98 ADP Minor Property j

99 ADP Training ]
\

All expenses are thus classified under both Cost Function and Cost Class. Only
certain Cost Classes are authorized under a given Cost Function however. A Cost '

23

7 e A AR e AN AL T



X /00

Class can be present in many Cost Centers, unlike Cost Functions which are related to
their particular Cost Center only. Table 3 shows the authorized Cost Classes for the
Cost Functions under the Cost Center 9110.

TABLE 3
AT RO 2 b N S R AT R o R 28
Cost Cost Function
Glass 9112 9113 9114 9115 9116 9117 9118 9119

02
0

44
@ﬁ

TSt e e
KR Z R ZrC g Z i Z Qg
K2 ZRZZr ORI
2 Z 22 Z 2 ZRKKZ 2
ZZZZ 22 2SI ZIIGIG]
222222%2%%&&&&&&&2&%&&%
&ZN&&?NZ&M&%N&&&N&%MMMM
A A A A
ZZ2ZRZ 222 IICZIQg )

C. E ESENT MEIO £V
H.ll &c lg M BUDGET CONTROL AND DSVELOPMENT

As pointed out by Coopers and Lybrand, the department manager is responsible
for his department’s budget, and therefore should be involved in the budget
development process. His involvement comes in the form of monitoring the
development process.

The budget control and development activity within MEIO involves two key
groups: the departmental managers and budget analyst. In most cases their give and

TR N

%

. ,~‘~ .l '.

A}
N . '.I;}\"..,(".:".\"_“:‘..' '..(._‘..'v' ~ N-\ N*,\n-.. ", _"f\'.‘



take in identifyving resources required develops the budget over time. Various managers
submit their sections’ needs and the budget analyst reconciles those with direction from
top department management and the Controller department. The key to this process is
“that the lines of budget submission and approval must follow the lines of
organizational responsibility.” [Ref. 7: p. C-4] This process is graphically depicted in
the structured specification in Appendix A.

Departmental budgets are prepared annually and submitted to the shipyard
Comptroller. They are developed by the particular department’s budget analyst with
various inputs and constraints presented from within the department and without.
Budget request inputs and clarifications are received from departmental managers.

ta A e AR At A e B a R & A S 2 )

Specific MEIO requirements and constraints are received from the top departmental

management. The Comptroller’s office submits various budget constraints to all
shipyard departments. These include dollar ceilings and floors, and leave hours not to
exceed 14°% of the total budget for labor.

Initially, when we were studying the process to develop the descriptive analysis,
budget input reports were produced and distributed by the Data Processing section of
MEIO. These reports were developed from information submitted by the
Comptroller's office. With the advent of a new shipyard accounting system, SABRS,
the majority of these reports were consolidated into one, and now originate directly
from the Comptroller department. At the present time the report is printed and
distributed manually; however, in the future it is anticipated that it will be
electronically distributed through the Prime network.

At the outset of our analysis, SABRS was still in the coding and testing stage but
past the projected impleraentation stage. The original contractor had been replaced
and the learning curve for the new programmers delaved the implementation. SABRS
was implemented at the beginning of fiscal year 1987, which was in the middle of our
system development. Consequently, SABRS is the information generation system that
we shall consider throughout this discussion, and not the old reports system.

After the budget input reports are received. they are used to track budget
performance. Performance reports compare budgeted to actual expense by Cost
Function, Cost Class, Cost Function/Cost Class, Cost Center, or by total for the
shipyard. These reports also serve as the basis for developing reports in response to
departmental managers’ queries. These queries are ad hoc in the sense that they are
not formalized, but may be requested when managers feel a need to monitor a




particular aspect of the budget. For example, prior to the implementation of the
SABRS system, the shipyard Commanding Officer requested a breakdown of costs for
each department by Cost Classes. The reports used at that time did not have the
information summarized by Cost Class for each department and the computer center
did not have the time to handle this one time request. Therefore, the information had
to be extracted by hand from the existing reports. This was not only time consuming
for the budget analysts, but also demonstrates the state of the current computer
system. The desired data was on the computer but there was no easy way to extract it
electronically.

Potential problems are detected by either the managers of a particular
department or by the budget analyst. If a manager finds a potential problem in the
performance report, he will contact the budget analyst who will research the problem.
The reason causing an unfavorable variance can be determined, and the manager can
decide if action is warranted to correct the problem. Or the “problem” may be the
result of planned expenses and not a real problem at all.

Likewise, if the budget analyst detects a potential probiem, she will alert the
appropriate managers. When further information is desired for clarification, job order
information that is associated with the expense may br accessed.! By accessing on-line
job order information, detailed information on an expense can be obtained. This
ideally will clarify any questionable variances.

D. SABRS

SABRS is a newly implemented accounting system with some interactive capability. It
is primarily intended to be used by the shipyards in the preparation of their annual
budgets for submission to NAVCOMPT. It is an on-line system with several
capabilities.

SABRS 1 is to be utilized by the budget officers and department budget analysts
to project costs using prior year's actual costs, escalation, and acceleration projection
as well as anticipated workload. The budget can be created from scratch, from existing
information, or from previous budgets. The historical data base is invaluable in
analyzing trends and making budget projections based on those trends. This historical
data base will be limited to only the previous year.

LAll work dope at_the shipvard is assigned a job order number. A job order
numger consists of the Cost Function number, Cost Class number, and a four digit
number. -

26




- e
+ e e Y e

o0

o

-

-~ - - -

4
,
4,

' AN T TR AT AT R T 8 - L L LR LR N
Tnfly BOLY LS S R Ml ,o. SO on ..- 2™ " PO R N OG> o ¢ 1 > )

PR T TR T O T RN R TOR PR O T L Y g b g 4.0 gt pl

This interactive system will allow the user to test budget proposals and conduct
“what if” analysis of various budget options. Budget detail can run the spectrum from
shipyard total budget, to Cost Center, Cost Function and Cost Class levels. Graphic
display of the resulting analysis is not available with the system.

Although the system has many interactive capabilities for the various users, at
present it is only used to create budget versus actual performance reports (SBR-22A
and SBR-22B). Obviously, the complete system implementation of SABRS 1 will be
required before the shipyard managers have a comprehensive and sophisticated budget
analysis tool.

SABRS II is designed to allow the users to prepare budget exhibits required by
NAVSEASYSCOM. Although it will provide assistance to the Comptroller’s office

and department budget analysts, its analysis capabilities for the average user are
limited.

27

¢ (]

PR N NI GO

~
-‘J -,'v




IIl. LITERATURE REVIEW AND THEORETICAL FRAMEWORK

A. DSS DEFINITION

Many books and articles have been written on DSS. The subject is relatively
new, becoming part of the Information Systems jargon as recently as the mid 70’s.
The exact definition of what can be classified as a DSS is itself a gray area.

Peter G. W. Keen and Michael S. Scott Morton [Ref. 1] are acknowledged as
the major authorities on DSS. Their work was one of the first major writings on the
subject of DSS and is used as a focal point for most subsequent works. They
originated the now standard term DSS. Keen and Morton [Ref. 1: p. 15] view DSS as
part of the natural evolution and maturation of information systems and management.
Mature MIS systems should be available before a DSS system can be implemented
with success.

A DSS has been characterized as an interactive, computer-based system that
helps decision makers utilize data and models to solve unstructured problems
[Ref. 2: p. 4]. A system requires three capabilities to be classified as a DSS: a data
base management system, a model base management system, and a dialog management
system [Ref. 2: p. 28]. MIS deals with structured tasks, while a DSS deals with semi-
structured or unstructured tasks. This divergence from what is considered MIS has
caused the development of new techniques and methodologies for the development of
DSS. These techniques often are not new to the MIS community, but rather have
been considered improper for the development of past MIS.

B. DESIGN AND IMPLEMENTATION
1. Structured Approach
Structured analysis and design is the present popular and successful procedure

for the development of MIS. Structured analysis and design provide a checklist for the
developer to insure all necessary aspects of the system are incorporated. Although
often given other names, the following steps are generally associated with the
structured approach [Ref. 8: p. 17):

1. Problem definition

2. Feasibility study

3. Analysis

4. System design

28




S. Detailed design

6. Implementation
3 7. Maintenance
. Since DSS is concerned with problems that are classified as semi-structured or
: unstructured, it seems logical that a structured approach may not be the best
. ’ approach. A structured approach requires that each step be methodically followed as
if they are listed. The output for one step serves as the input for the next step in this
- top-down approach. Often it is not easy, if not impossible, for an unstructured or

« semi-structured task to be fully defined. Therefore, it can be very difficult to develop a
E’, clear design flowing from step to step. The nature of unstructured and semi-structured
K task definition involves backtracking through the development steps, following an order
' which is not consistent with a top down approach. A structured approach may indeed
b have frequent returns to earlier steps, but the sense of progression from step to step
’i must be maintained [Ref. 8: p. 16]. This progression does not have to be maintained in
g DSS development.

‘ 2. DSS Approach

'{; Keen and Morton's process for developing a DSS is not a cook book

M methodology. There is not as clear cut a process for the design of a DSS, although
several authors note common, key processes that must be accomplished sometime
within the development cycle.

The main distinction between the current trends and practices in the MIS field
; ~ and in DSS design can be seen in the concurrency of design and implementation.
. Design and implementation are inseparable and evolutionary in DSS [Ref. 1: p. 167].
This is a common thread in the DSS literature. Design and implementation are not

3 separate phases but two blended iterative steps.

X The unstructured nature of DSS problems can result in vague problem
! definitions. This vagueness can only be approached through the flexibility of this
. iterative DSS methodology. The concurrency of design and implementation act as a
p bridge between the designer and the user, increasing their communication. Short as

possible cycles of design and implementation allow the users to frequently evaluate the
! development effort and increases understanding of the users’ needs.

Two other important authors of DSS literature who built on the ideas
, proposed by Keene and Scott Morton are Ralph H. Sprague, Jr. and Eric D. Carlson.

l. - . N . .
A Sprague and Carlson [Ref. 2], also emphasized the need for an iterative design. A DSS
L)

X 29

K

K

o

‘_0

"

i)

N

(R ¥ Y (] ) \ 2 PP S . A TS A T > £
R0 i MO SRS NE D P, IS M WOV, PN % A RN N NV IR G a o Lo o Vin o Cails Kt ot oV,

.....

~~~~~ » S N TNt AL SR A AL ST S TS Wt N
e ) L O RS TS P -(\* "~’\~~ ‘-*’\ s



must “be built with short, rapid feedback from users to ensure that development is
proceeding correctly” [Ref. 2: p. 15]. -This keeps the user involved and aware of the
progress, making change easier and quicker. The stages of typical system
development, analysis, design, construction, and implementation must be “combined
into a single step which is iteratively repeated” [Ref. 2: p.15]. This is similar to the
concept expounded by Keene and Scott Morton, except expanded to be more inclusive.
Sprague and Carlson not only included design and implementation in their iterative
methodology, but also analysis.
3. Problem Definition

Focusing the Approach structured approach commences with the definition of
a problem. Although Keen and Scott Morton's approach is dissimilar to a structured
approach, it does have a logical first step: the identification of a key decision [Ref. 1: p.
173). A key decision, once identified, becomes the focus of the initial DSS. This
narrows the scope of the initial implementation and allows the user the flexibility to
make changes after he sees a working system. Any changes can be designed and
u implemented in an iterative fashion.

When choosing what decision to implement, the probability of success is
always increased if the client has a readily identifiabie problem or need. Normally this
results in a user who is an excited proponent of the new system. The “anything is
better than what | have now” attitude often breeds cooperative clients and sometimes
even fanatics. A cooperative and committed user does not guarantee a successful
project, but without some support from the user, the project is doomed to fail. The
earlier his commitment is generated, the easier the development will be.

4. Strategic DSS Development

Sprague and Carlson expanded on the concept of focusing on one key decision
and divided DSS into three technology levels: specific DSS, DSS generators, and DSS
tools. The level that actually accomplishes work is the specific DSS level. This is the
final product that serves the user’s needs. Specific DSS’s are built from other levels,
either from generators or tools. The lowest DSS level is that of tools. Tools facilitate
the development of either Specific DSS or a DSS generator. A DSS generator is a
collection of tools or capabilities. [Ref. 2: pp. 10-12)

When developing a DSS several approaches can be taken. First, tools can be
developed with no specific DSS in mind. These tools can then be integrated to build a
DSS generator. The generator can then be applied to several different specific DSS's

30

‘l...i 6."h"‘ l'... ) A L) ("" p P |. \ -\.\f.\ Crat

B A T R A TS TGRSR S SR CCA AR TR LR
LT T T Y T N Ry, Ll 2 b e AN » [ B L N ) o W o p *'u 'y 3 dial 3 .



as applications arise and are implemented. New tools can be added to give the
generator more power. This approach is expensive and tangible results are slow in
developing. Careful planning and extensive analysis is necessary to insure the proper
tools are available when a DSS application arises.

The other approach focuses on a specific DSS, acquiring the tools needed to
build that specific DSS’s. These tools can then possibly be used for other specific
DSS’s within the organization. A generator is then created indirectly by combining
tools. A generator does not evolve until several specific DSS’s are developed. Building
a specific DSS is the preferred method because immediate results can be seen quickly
and at a relatively inexpensive price. Subsequent specific DSS development is not as
simple as it would be if a generator already existed.

S. Tactical DSS Development

Depending on environmental factors (such as the organizational structure, the
tasks, the users, and the builders) three different tactical options are recommended by
Sprague and Carlson [Ref. 2: p. 60}:

1. The quick hit. If it is not clear that ? general DSS capabili lS needed but
8§re is a recognized highpavotl area for decision sup ort evelop c

directly using theé most appropnate tools, capture the bene xts then
consider what to do next.

b IREESITEIE Pt R PR B Sk
genentor evlglves f:o e eelg%ctgte‘nt of seven ccessive spegﬁlcn Bs§

complete DSS. Before building a ¢ DSS, develop a full-servi
B%S generator. and the orgamzauongl sny B: pr managcxlngexto P c

The staged development is recommended because it is the most balanced approach of
the three. Results can be seen quickly and future DSS development is planned, which
is usually less expensive than building a system without any planning.
6. A DSS Action Plan
Planning is the key to success in any endeavor, and design of DSS is no

exception. Sprague and Carlson [Ref. 2], have identified four phases of an action plan.
These phases do not conflict with the iterative, simultaneous design and
implementation of DSS. Rather. they provide a framework (or the design of additionai
DSS. The four phases of the plan are [Ref. 2: pp. 67-68]:

1. Preliminary study and feasibility assessment.

2. Development of the DSS environment.

3. Developing the initial specific DSS.

4.  Developing subsequent specific DSS.

31

e \\'- ’,,q....\,,‘*' W AN ;,,..,r,"‘-‘.r\r‘ LSS ENS G



The preliminary study and feasibility assessment are the same as in the
structured methodology. Once a problem is identified, a feasibility study is needed. In
fact, this study can be initiated prior to the knowiedge that a DSS is necessary or
desired, in response to a particular problem. During this preliminary study, pilot
projects can be implemented to ascertain DSS needs. These pilot projects can also help
find the project for the first specific DSS.

Phase 2 forms the DSS environment. A minimal set of tools are either
developed or purchased with a plan for creating a DSS generator. The initial specific
DSS design and implementation can then begin. The specific DSS should be in a
highly visible area that has observable benefits. Tools can be updated or added as
necessary.

In the next phases the specific DSS is designed and implemented in an
iterative methodology. Upon completion of the initial specific DSS, other DSS’s can
be developed. The second DSS should be related to the first. For example, duplicating
the same system for another division with a different group of users would probably be
easier and yield a quicker payoff than deveioping an unrelated system [Ref. 2: p. 67].
In practice the initial DSS does not have to be completed prior to the start of phase 4.

7. ROMC

Another technique Sprague and Carlson introduced was the ROMC process
[Ref. 2: p. 96). ROMC is a process independent approach for identifying the necessary
capabilities of a specific DSS by focusing on Representations, Operations, Memory
aids, and Controls. The representations help to conceptualize and communicate the
problem or decision situation. They identify what the user actually wants to see as
output to make better decisions. Operations allow the user to analyze and manipulate
those representations. They allow the user to integrate the representations desired into
the decision maker’'s style. Memory aids assist the user in linking the representations
and operations together. A data base acts as a memory aid by presenting different
views, profiles, libraries, or by acting as a trigger that reminds the user that certain
operations need to be performed. Control mechanisms handle and integrate the entire
system. Control mechamusms allow the decision maker the use of the system in a way
that conforms to a particular user’s decision style. Menus, training, and some
operations make up the control mechanisms for a DSS.

32

e e ALt L e o
K ARV, e I N P T8 PO NN

':LM

.s..a.'fl..n.ﬂ



C. AREAS OF DESIGN
The design must also cover three almost separate areas [Ref. 1: p. 181}:

1. the “user’ design, defined in terms of the
uves,

2. the interface or driver which links them, and
3. the data-base management design.
Each of these areas must be addressed in the design phase.

If user design, the data base, or the interface is ignored, the consequences could
cripple further DSS development. When the user’s needs are not fully addressed, he
will not use the system. Neglecting data base management results in the necessary
information not being available when needed. If the driver system which links all of
the modules for the entire DSS is not designed properly, then the system cannot
function as a coherent system, even if all its parts work perfectly.

1. User Design

The user design is the logical design of the system. This develops the tools
that form the DSS. The developers must have a clear understanding of what the user’s
needs are, and ensure that these are addressed in the system design. That requirement
is no different for DSS development than for MIS development. The difference is that
it is critically important for DSS. Unlike an MIS project, you can not make do with a
system that meets only part of the user’s requirements. It either meets those needs and
is used, or it is not used.

2. System Interface

A dnver links the tools into a usable svstem. Almost ail known DSS's use
some version of command-driven approach for user interaction [Ref. I: p. 181]. This
allows flexibility and ease of use. [t aiso nurtures the iearning process about the tvpes
of decisions that can be addressed.

Flexibility is necessary in a DSS because of the unstructured tasks it is
designed to perform. The ad hoc capabilities, that have been the hallmark of DSS over
the past decade, can only be accomplished through the use of command dnven
svstems. Svstems ‘vhich are limuted onlv to menus, Jo not have this leuimiity The
designer cannot think of every possible combination that a decision maker may want at
some future time. Even if all possible combinations are known, the cost of

implementing them in another form other than through a command language would be
prohibitive.




3. Data Base Management

Data-base management is of prime importance. Almost all DSS’s are centered
around a data-base system. The data base contains the information that the decision
maker needs in order to make better decisions. The data base constitutes the
capabilities of the entire system. The information that must be in the data base needs
to be identified early in the design process.

Having a data base prior to the building of a DSS simplifies the design of the
DSS. The functions that the DSS has to deal with are lessened. Most data base
problems can then be discounted or at least simplified. The collection and
maintenance of data used by the DSS may already be accomplished. Most data base
management issues will be resolved, such as integrity and security. An added benefit is
that the chances of different specific DSS’s sharing data increases. [Ref. 2: p. 223]

Data can be obtained from many sources. A DSS must be able to aggregate a
variety of information. Data can be extracted from a data base whether in house or
from outside sources. The DSS is then able to manipulate data from several sources,
and format it into useful information for the decision maker, without affecting the
source data base. Data extraction, taking data from one data base for use in another,
allows source data files to be organized for efficient data entry, update, processing, . '
output, or protection, without additional indices or data to support the DSS [Ref. 2: p.
248).

The original data base management system can be used for the functions for
which it is best suited. Indices and data for the DSS are stored separately from the ;
original data base, within an extracted data base. This prevents degrading the
performance of the original data base.

D. ENVIRONMENT
1. Attitudinal Direction and Requirements

The initial implementation using the iterative development approach is most
effective in a computer resource environment that is both centralized and decentralized.
and having slack resources {or research projects. [Ret. l: p. 236]. The centraiized
aspect of the computer resource must be at the lower tier, providing controls over the
system through well structured procedures. The decentralized aspect of the computer
resources provides an environment that is more attuned to experimenting, and research

and development. Slack is also necessary because the DSS changes the organizationa!

d




emphasis from efficiency to effectiveness. An increase in effectiveness is usually
attained at the expense of efficiency. Extracted databases, modeling, and other
computer manipulations and displays can greatly decrease the efficiency of an MIS.
This new DSS application should be classified as R&D until it becomes an integrated
system. The slack resources cushion the inefficiencies of a DSS development
preventing a drain on resources from other areas.

2. Developmental Requirements

Iterative design is the key to DSS design. The evolutive approach is a
methodology based on the progressive design of a DSS, going through multiple, as
short as possible cycles. Successive versions of the system under construction are then
utilized by the end-user. The steps in the process include [Ref. 2: p. 139-140}):

1. Identify an important subproblem.

2. Develop a small but usable system to assist the decision maker.

3. Refine, expand, and modify the system in cycles.

4. Evaluate the system constantly.
These steps reiterate the previously mentioned design criteria expounded by both
Keene and Morton, and Sprague and Carison.

Selecting a problem with a high probability of success is paramount in DSS
design. When a small system works and the contributions of a working DSS system
can be demonstrated and observed first hand, the product sells itself.

3. DSS Prototyping

“The most successful installation technique is prototyvping™ [Ref. 2: p. 153].
Prototyping provides lower nsks in the development by controlling excessive
expectations. By actually demonstrating the feasibility, the user can see the actual
benefits a system mayv have. With a created working svstem, the developer has
concrete facts on which to base further DSS feasibility.

4. User Education

User involvement in any system development is important, and the iterative
nature of DSS makes it doublv so. To insure the user stavs involved and that future
asers can get involved, proper procedures for training must be implemented. User
education on a DSS can be in three forms [Ref. 2: p. 153]:

A one on one or tutonal technique.

l
2. User courses. lectures. or professional development seminars.

Resident expert assistance when needed.

el e vV 1 o8

(R AR IS

. .‘

5 4% 44 °,

“s %y

[P e

5 %




This education must begin at the early stages of development. This will ensure the user
can benefit from the system.

A one on one tutorial is the most common and expensive training technique
[Ref. 2: p. 154). The use of training courses and seminars is another common method.
An expert, either internal or external, can instruct users at all levels of the
development. The expert, acting as a consultant, is a passive version of the tutorial
technique. Different combinations of these techniques can be developed. The main
lesson is: user education must be included in the design. This insures that those who
can benefit from the use of the DSS have the ability and skills necessary to do so.

S. Support for DSS

Factors which increase the likelihood for success of a project are top
management support, a clear felt need by the client, an immediate, visible problem to
work on, an early commitment by the user, a conscious staff involvement, and a well
institutionalized OR/MS or MIS group [Ref. 1: p. 196]. Support from top
management greatly enhances the acceptability of any new project. Employees are
more willing to support the development effort if they think it is a good idea. If top
management is not supportive, or is hostile, others will be less likely to accept or even
give the project a fair trial.

E. FINAL WORDS

Gad Ariav and Michael J. Ginzberg [Ref. 9], further define the three functions of
a DSS first expounded by Keene and Morton. Figure 3.1 lists the components of a
system which Ariav and Ginzberg think are necessary in order to have a DSS.

The first component, dialog management, is broken down into user interface,
dialog-control and request transformer. Without each of these subcomponents the |
diaiog management system is incomplete. Data management, the second component,
is subdivided into the data base and data base management system, a data directory, a
query facility, and a staging and extraction function. Finally, the model management
system {s partitioned into a model-base management svstem, model execution,
modeling command processor, and a data base interface. These subcomponents define
the complete DSS.

Ariav and Ginzberg [Ref. 9], looked at the basic resources of a computer system:
hardware, software, people, and data. They found it is only after the DSS has been
designed (after the components and their “ideal” arrangement have been selected) that

36




TP . (Y] WO D YD “a ‘a2 &' a A" FRERESNERERAERE N

' 1. Dialog Management
‘ 1. user interface
2. dialog-control
3. request transformer
2. Data Management
data base and dbms
data directory
query facility
staging and extraction function
3. Model Management

R e S

o o
b W=

[

mode-base management system
model execution '

P AR

modeling command processor

o

Eali ol A

data base interface

& oo T,

Figure 3.1 DSS Components (Functions).

[,

resources should be considered. [Ref. 9: p. 1049]. The solution should drive the
selection of a system, the system should not drive the solution. If the arrangement is
set prior to design, the options of the design are greatly hampered and creativity
stymied. The designer must design a DSS based on the solution to a problem.

Ariav and Ginzberg [Ref. 9], divided software into four types:

e ]

1. General-purpose programming languages.

2. DSS tools.

3. DSS generators.

4. Generalized DSS.
These tvpes correspond to the technology levels of DSS from Carlson and Sprague.
\ General purpose programming languages provide only limited leverage for the

development of a DSS. Tools are already available and are usually cheaper than

5 reinventing the wheel. DSS tools provide only a single function, but as a group can be
the building blocks for a DSS generator. Tools only address one function of DSS and

- -
< iy

P

37

]
¥
3
:

- - R LI I RN S LIPS I ) e e T T )T ..-'\~°\ T ,\'_‘.. AT,
T T B O R N R



need to be integrated into a system. DSS generators are a collection of DSS tools but
are tailored to one specific problem. For example, the DSS generator IFPS deals only
with financial problems. Generalized DSS can support a class of problems. An
example of generalized DSS would be a PERT/CPM system.

The design of the DSS should be independent of the software as well as the other

components. This is known as an outside approach. An outside approach provides
that the selection of components and their arrangement (the inside), must follow from
an understanding of the environment and the role (the outside) [Ref. 9: p. 1051].

The last author and noted authority on DSS that should be looked at is George
P. Huber [Ref. 10]. Huber [Ref. 10: p. 250], states that a DSS is a system specifically
developed to carry out some of the decision making information processing. This
definition, although vague, shows the trend for DSS’s toward an increasing direct
decision making influence. A DSS allows decision makers to make use of the data
that other technologies are m;'iking more and more available. There is indeed an
information boom as we move into a service oriented society from an industrial society
[Ref. 10: pp. 250-252). This trend, as well as the advances in technology, has provided
the decision maker with more and more information. The role of the DSS is the
aggregation and summarization of all the pertinent information that is available from
all sources. A DSS allows decision makers to make use of the data that other
technologies do not.

38

. 1%154' O w’ N A A A L U e e e T T et G T T L
o » L - a L - L} 3 A * o o S A 2 o

e, et T




R

T Y I T e D D O R R R A O O RO T O R N IR U N Y XY TR R U WU W TR WP U W W

1IV. METHODOLOGY

A. INTRODUCTION

The methodology we followed was a task organized approach. We chose our
methodology as we proceeded based on our particular situation and constraints. This
approach to DSS’s was a semi-structured one, which is fitting since DSS is supposed to
help solve semi-structured problems. The project had a purely R&D attitude, with a
useful product as a possible side benefit.

Throughout this thesis we refer to our system as a prototype. A more precise
terminology may be pilot project. Our intent is not to initiate a DSS but to "test the
waters” to see if an environment suitable for a DSS exists. Our intent is to:

1. Test a methodology based on a semistructured, task organized approach.

2. Determine if a suitable environment for further DSS development is present or
can be established.

3. Determine the next step for future DSS development, if appropriate.

4. Provide the shipyard with a usable, user friendly system involving control and
graphic displays.

Since our approach in determining the environment revolved around a methodology for
the development of a DSS, we refer to this system as a prototype.

Many constraints, from hardware to software, were introduced. The shipyvard
already had a mainframe computer, several minicomputers and microcomputers, with
more micros on order. That level of prior hardware investment and the nature of our
project required our sysiem to operate on the existing hardware. The minicomputer
application was chosen because of the number of terminals connected through the
shipvard network and available to all managers.

Additional constraints involved software. No new software to support the
prototype was planned. Therefore, the first order of business was to learn the existing
system’s capabilities. The software we originally focused on included CPL. the
Command Processor Language for the Prime minicomputer, the Supercomp
spreadsheet program, and TEL-A-GRAF, a business graphics package that was
recently purchased by the Shipyard.




1 g%y 0.8 %ae .0 Aag ¥ (8 a8 Sab < aat vap "ap * $ova cm® e tpG b ad el At el ol tab tat el el Vo % aa 8% 1% Ba d'a 1’

B. ITERATIVE DEVELOPMENT

The major theme throughout the literature on DSS development is the use of an
iterative approach, which was central to our methodology. It provided flexibility
because it allowed us to combine the design and implementation phases through the
building of a prototype system. Since this development strategy results in a rapidly
produced prototype, it should not be construed to represent a complete production
model DSS. This effort merely introduces the concept of DSS within an organization
with no prior development experience in this area.

The iterative approach calls for rapid succession of the system development steps,
with redefinition of each step on subsequent iterations. Our only strict exit criteria was
the prototype. We set no limits on the number of iterations, nor did we expect to have
a completely functional DSS at the end. Our expectation was to have a useful
prototype that could demonstrate one small contribution a DSS could make, and to
give direction to further DSS development within the shipyard.

1. Problem Definition

The first step in any new system is problem identification and definition. The
Coopers and Lybrand study outlined several problems common to most Naval
shipyards. The focus of our project centered on one set of issues: the budget system
for the shipyard. This project was focused for one division, but is easily expandable
shipyard-wide as the prototype matures.

In addition to the Coopers and Lybrand study, the Mare Island Naval
Shipvard Information Resource Management Plan [Ref. 11], outlined the need for a
shipyard-wide DSS. This perceived need for a DSS and the desirability of the budget
system being a part of that DSS, placed a two-fold goal on this project: provide a
system to improve managerial control of the budget and expense, and to introduce the
concepts and capabilities of a DSS to the shipyard.

Keen and Scott Morton refer to a “diagnostic perspective.” Designers need to
be sure that "they understand the realities of the decision situation...they need a
descriptive model as the basis for identifving a normative direction.” [Ref. 1: p. 77]
Although our system is smaller than the DSS that the authors were describing a
strategy for, aspects of the areas they felt must be addressed will be identified and
explained. The most applicable areas are the “organizational procedures view, the
political view and the individual differences perspective.” [Ref. 1: p. 63]

40

Ml a W TN d LN A A P N A A N R A T N AL S P L P S At Al L et g T e e T I T
MEEQ?M*{!?&&}Hf?;}L\&&‘J&.a}.nl..(t.;‘:.g?.&.n;A:Mhuzm;.:“: - T, 0 A, J

RNV, LGP R AR TN A



The organizational procedures view is articulated through the use of the
structured techniques of analysis. The structured specification outlines the flow of
data, the processes or procedures that manipulate the data, and the storage of data.
The data dictionary seeks to define the data elements identified during the data flow
analysis. The structure chart shows the development of the system design to meet the
requirements of the organization’s operation. This effort is the structural approach
practiced in present systems analysis.

The political view is approached less formally in systems analysis. It is not
explicitly documented in our analysis, but has tempered our considerations and to a
degree, the direction of the development effort. For example, working on a project
within the Comptroller Department was not possible because of their current concerns
with the SABRS project and our inability to identify definite gains or improvements for
SABRS, as an outgrowth of our project. On the other hand, the degree of support
available within the MEIO Department caused us to devote our initial efforts to them.

The individual differences perspective has some applicability to this project.
Since our prototype was developed with inputs coming from only two individuals, we
easily reconciled any particular differences between them. A larger development effort
within the shipyard would require additional efforts to meet the needs of a wider
spectrum of managers’ styles.

2. Structured Techniques

We required that the system we developed be as maintainable as possible.
The adherents to the structured methodology claim that fact; therefore, we were
convinced to include the method where possible in our development. Many
proponents of DSS might disagree with this decision. Sprague and Carlson point out
that “DSS are,...,research efforts, not DP projects, and therefore not well suited for
traditional project management procedures.” [Ref. 2: p. 138] We would agree up to a
point. DSS are transactionally oriented processing systems and therefore the discipline
imposed by the structured techniques are still applicable. In addition, we did not have
the luxury of being in close proximity to the users or the programming environment.

These constraints required that we use a methodology that produced clear and
understandable documentation, and also required minimal correction of the code.

We took the structured approach to analysis and design, relaxing the ending
and exit criteria. The structured methodology was used for the analysis because we felt
the approach of Keen and Scott Morton was not rigorous enough in identification of a

ey e




Top.e RN Mo By B s B BVa ¥4 2% ‘2%, 20 "ol 2t a9 o) Cak vod A 8 LS .0 00 LAY 200 0 F. 00,278 22 .00 208 2% & TP

clear approach to the description process. It would not produce the documentation
which we believe is essential to the clear understanding of readers and follow-on
implementors. Additionally, the documentation produced would be textual. A textual
description would not have been as clear, and definitely not as concise, as the
structured specification.

a. Feasibility Study

If we had been closely following the structured analysis and design
approach, the next step after problem definition would have been the feasibility study.
Since a prototype system is an example of a technical feasibility approach, and no
further systems purchases were considered, this step was not needed.

b. Analysis and Design

The next step was analysis. Our analysis took us in two directions. The
budget system within the MEIO department was one area that was investigated. The
other area dealt with the hardware and software that had ali'eady been selected. We
were not familiar with the hardware nor the software. Hence we had to learn both the
budget system and the computer system simultaneously. At this same time we began
the system design. We used structured techniques to graphically map out the system.
These preliminary designs were actually completed before the analysis.

The descriptive analysis we conducted corresponds to the Predesign Cycle
suggested by Keen and Scott Morton. We attempted to build “momentum for change
and developing a ‘contract’ for action...” in order to foster the initial climate for
change [Ref. 1: p. 173]. The output of this approach is to produce a normative model
for the present system and design the DSS in response to that [Ref. 1: p. 174]. The
“degree of change” proposed by our design is not large because of the nature of our
project. This approach was necessary to minimize risks and resource requirements.

To assist in this design, we followed the ROMC method introduced by
Sprague and Carlson [Ref. 2]. We started at R, representations, and developed three
main graphical representations. Several graphic displays of these representations were
identified. We developed these graphics by focusing on one manager, a decision maker
in the MEIO department. This heiped us to narrow the analysis to a workable scope.
Other representations were also considered, such as comparisons between budget and
expenses in column form. We decided that most of that information already existed on
their present reports, although not in an on line mode. SABRS was to give the user

this capability when operational. We decided to concentrate on areas that were as vet

42

------------

.........

. YL WY WL WO W

Nt

w@m N ALY

.\.\\\.\\



not directly addressed by the current MIS efforts. One other representation considered
was the spreadsheet. A spreadsheet could give the user limited “what if* capabilities.
We decided that the initial prototype would contain only the graphics in an easy to
use, menu driven system.

The next step in ROMC is the Operations. For our prototype system the
operations centered around the graphic display of the data. It included selecting and
displaying desired budget and expense information. The Memory aids for our initial
system focused on the menus of the system. Finally, the Controls for the system are
also handled within the menus at this preliminary stage.

At this point in the development, the analysis of what we considered a
solvable problem was completed. This problem was also considered to be of value to
the shipyard. The budget problem made the expansion of the system to other
departments and to the Commanding Officer of the shipyard a likely second specific
DSS to pursue.

The preliminary design had been completed. The structured specification,
consisting of data flow diagrams, data dictionary and structure charts had been
completed. The detailed design was already begun. Basicaily, the simplicity of this
initial system allowed us to combine these two structured steps and do them
simultaneously with the analysis.

c. Implementation )

The coding and implementation was then beguh. This was done iteratively
with revisions coming mostly through the designers. Initial graphics were completed
on an [BM mainframe at the Naval Postgraduate School and then reentered on the
Prime minicomputer when on site. This was done solely for the convenience of the
authors. The geographic separation of the implementation site and the developers
prevented a more interactive approach. This did have an effect on the timing of
iterations, which caused the project to take considerably more time than initially
planned. A helpful capability we had at our disposal was that we could interface
directly with the shipyard’s Prime minicomputer, and we authored most of the driver
programs from out remote site. Some of the graphics programs were also entered from
the remote site, but they could not be completely tested. The terminal used to
interface with the Prime computer was a Convergent Technology’s C-3 terminal and
software, which was not suitable for the graphic displays produced by the TEL-A-
GRAF programs.

43

f; -H‘p..'-’ﬁc"'\‘,




When a skeleton working system was completed, we began a similar
implementation on a micro. The micro system was developed for an IBM compatible
XT or AT. Four reasons justified this effort. First, the trend toward personal
computers in the work space is prevalent in all industries. Second, the shipyard just
purchased several IBM compatible Zenith PC’s. Third, the same analysis and design
were used to code and implement the system on the PC. Fourth was our desire to
quickly implement our data base design as 2 model of what could be developed on the
minicomputer system.

These efforts confirmed the generic design of the system, which was one of
our goals. We strove to design a system that could be generically implemented on any
system having the appropriate capabilities.

When coding and implementation were completed the testing of the system
was accomplished. Additional graphics were added to complete the final prototype.
From this prototype, the direction of the future DSS development can be determined.

3. Data Base Development

The data base is the central focus of our proposed DSS. Further, an
understanding of the data flows in the budgeting process helped us as analysts to know
exactly what data were important to this system. Sprague and Carlson identified data
base management as "an important prerequisite to a DSS...” [Ref. 2:p. 222].
Although we have not incorporated data extraction capabilities into our design, we
would agree that a clear understanding of the data involved, and a method of
manipulation of that data, is important to the design of any system.

This aspect of the system did not concern us directly. However, we did
identify the data that would be needed for the initial DSS. The source of this
information was also identified: the reports that the shipvard was already producing.
The MIS department agreed to handle the data extraction, and we proceeded on the
assumption that the data would be available in the format we desired.

The data base design efforts for the microcomputer prototype involved the
relational data base methodology. Our primary reason for selecting it was our
familiarity with it. In addition, it allows a great deal of flexibility to shift between
logical and physical design. The relational design can also be readily applied to other
methodologies. The fact that the particular relational data base management system
available to us, for the microcomputer implementation, was also bein installed on the
shipvard’'s Prime network, further influenced our decision.

----- » ” " LR S ) L TP AR L P U T T TS AT N AT M e
o ~ WY LA LAY ."c,. l,'l.l. .I.N‘-O'a ¥y W W, -- ‘ O 4, %0 S0 % . Ty t.




- W ™

AN

For our initial system the required data consisted of only expense data and
budget data, which were already available. However, no historical record was kept
electronically as the data tapes were overwritten about every two months. It was
realized that an historical data base would need to be kept for a flexible DSS. This
requirement made the choice of the minicomputer for the system even better due to the
volume of the data necessary for such an historical data base. We also realized that a
shipyard-wide DSS would need a flexible data base management system. Although the
initial implementation would only need a simple DBMS, the backbone of an overall
DSS has to be the data base system.

In the future we foresee the mainframe and the minicomputer becoming more
of a data repository and less application oriented, as the microcomputers become more
pervasive within the shipyard.2 This trend would allow the decision maker to
manipulate his own data base on his PC, and allow him to update or reinitialize his
data base from the master file on the minicomputer.

In actual use, this data base must at least be compatible with the data base on
the minicomputer. We further recommend that the two data bases have similar
command languages, to avoid a situation where managers and users, have to learn two
different systems. Compatible data bases would simplify the sharing of data and data
extraction.

*Interview with Ronald Munden, Manger MEIO, Mare [sland Naval shipvard,
December 10, 1986.

45

NN

o

N




V. PRESENTATION OF THE PROTOTYPE RESULTS

A. REQUIREMENTS DEFINITION
1. Cost Center Analysis (Minicomputer)

Cost Center Analysis (minicomputer) was developed for the Prime 9753
minicomputer. This system operates under the PRIMOS operating system and
employs the Prime Command Processor Language (CPL) as its development language.

The prototype is made up of several small programs, based upon the system
structure chart, in Appendix A, developed during the analysis portion of the project.
Sub-programs rather than sub-routines were used because CPL does not allow the
passing of parameters from sub-routines to calling program.

Differences between the modules of the structure chart and the actual
programs written were the result of three factors. First, the goal when we developed
the structure chart was to reduce the modules to their functional primitives. CPL has
several constructs which combine some of the functional primitives. Therefore. it
would have been inefficient to strictly follow the structure chart during actual coding,
developing each module as a separate entity.

Second, the interface to the spreadsheet was determined to be time infeasible
due to the nature of the spreadsheet’s method of control. This was especially true in
light of the fact that this was not a critical implementation to the users. The
spreadsheet requirements could more effectively be met using SABRS. Developing the
interfaces to SABRS would have been outside the scope of this initial project;
therefore, it was not included.

Third, the project ~as originally designed to allow the user to develop his own
data and include files for TEL-A-GRAF while still in CCA. The resulting loss of
control, an inability to ensure the user developed standardized files, caused us to
eliminate that capability. However, the flexibility required for ad hoc queries is still
available within the system. This feature is provided through the TEL-A-GRAF
command language.

a. Module descriptions and functions

The structure chart depicted in Figures 5.1, 5.2 and 5.3 graphically

describes the interrelationships between the following program modules.

46



W"m T e W

Repoins]
Prepare

47




rrrrr

(1) Prepare Reports (PR.CPL). This is the top level program driver of the
system. It calls the subprograms to produce the top level menu, accepts and then
validates the user’'s response, and selects the appropriate subsystem or ends the session.
Thus, the system is transactional in that the particular subsystem selected is based
upon the user’s response.

(2) Display Menu (DT5.CPL). This is the program that displays the top
level menu.

(3) Call Tel-a-graf (CTEL.CPL). The major sub-program of the system,
this allows the user the option of selecting standard report formats and nonstandard
ones. Depending upon the user’s selection, it will call the appropriate sub-programs to
implement the desired graphic report.

(4) Manipulate TEL-A-GRAF (MANTEL.CPL). This program calls the
sub-programs that allow the user to select the Cost Center Code, Plot Code, Plot
Options Code, and finally open TEL-A-GRAF. The Cost Center Code determunes the
particular Cost Center to be studied. Plot Code allows the user to select the tvpe of
graph he wishes to produce with TEL-A-GRAF. The Plot Options Code controls the
level of detail that the user wishes to select.

v v K RN

The modules that select the codes are very similar in structure. We will
explain the sub-programs to select the Cost Center Code. The other codes are selected
in much the same way. Select Cost Center (SCC.CPL) calls Display Cost Center
(DCC.CPL) and assigns the value of the function Validate Cost Center (VCC.CPL) to
the variable. That variable i1s subsequently returned to Manipulate TEL-A-GRAF
(MANTEL.CPL). Display Cost Center provides the user a menu of the Cost Centers
available for analysis; that number is one for this initial project, but could be easiiv
increased in subsequent versions. Validate Cost Center requests, gets, and validates the
user’s response.

(5) Open TEL-A-GRAF (OPTEL.CPL). This determines the data files
and include files to be used by TEL-A-GRAF, and calls the routines that actually open
TEL-A-GRAF for the user. Data liles are those that actually contain the Jdata to be
graphed. Include files are essentially programs written in a “structured English™ that
TEL-AGRAF uses to build the desired graphs. Open TEL-A-GRAF uses the
combination of the Cost Center Code, Plot Code and Plot Options Code to make the
determinations.

48

t *,{, “p 'b"f.;f’f'f PRI I A A SR S h ] W ASNE R "'.._ ....... -:_. AR R T A A R A AT W AN



[ L i i e e tie dladee diadiabindit A avdeadeinbdiddedriadehdu it

s o
1
=

"o

L _
TEL-A GRAF
‘s

Vang Pies

Vahd Cost
Contes Code
Vahe
Maru Caute
vesV splay
Get/Vahdal Pt Coan
Mo

Figure 5.2 Continued Structure Chart of CCA (minicomputer).

49

ERNY SRR




Get Vaiid
TEL-A-GRAF

Display
TEL-A-GRAF

Figure 5.3 Continued Structure Chart of CCA (minicomputer).

(6) TEL-A-GRAF Interface Programs.

Six sub-programs actually open TEL-A-GRAF. One allows the user
to make free form input to TEL-A-GRAF (FREE.CPL). This would be for those users
who had become somewhat familiar with the TELA-GRAF constructs and wish to
implement graphs which theyv design. A second allows the graph to be constructed
from one data file and one include file (SINGLE.CPL). The third (DOUBLE.CPL) is
used for graphs which have an inset graph, and therefore requires two data files and
two include files. The sixth (DOUBAR.CPL) is designed to produce a bar graph which
requires one data file but two include files. In order to produce a graph with a bar
chart insert and line graph, the fifth (TRIPLE.CPL) is used. (TRIPLE.CPL) requires
two data files and three include files, the extra include modifies the plot. The sixth
(QUAD.CPL) allows the user to develop a composite graph made up of four
subgraphs. It requires four separate data and four separate include files.

b. Usability

This system was designed for users needing an information display
capability through high quality graphics. In this case the graphics system’s command
language was diffTicult for the average user to learn. The shell provides them with the
ability to quickly produce the information displays that they require.

The system is designed in such a way that the users only minimally interact
with TEL-A-GRAF. In that way they learn the structure of the command language
and gain confidence in their abilitics to control TEL-A-GRATF. As they gain

50




- - e

- e g s

2t bt Bt 80 4'a8 Yo Ba 85 8% B4 2%a 4%2%2%4 20 40 2t tat 22 ad tah 6.4 4.3 8.0 4.0 t 0% AREREYNERY W

experience, the system allows users to begin to develop their own TEL-A-GRAF
command language programs and their own data files. .

The advanced user could use the system as a refresher when away from it,
or possibly to work out a problem that puzzled him. It is not likely that he would use
it to any great degree, however, since it would usually be quicker to go directly into
TEL-A-GRAF on his own.

¢. Expandability

The structured design of the system allows for easy expandability.
Subprograms can be added or deleted, usually with a one line change in the calling
program.

The range of changes could include interfacing with additional systems such
as a spreadsheet, statistical program, or SABRS. Additional Cost Centers could be
added very easily. The only limiting factor would be to provide the data files. This
could be circumvented by using a data base management system that would produce
the data files, and then an application program which would format them for TEL-A-
GRAF. Additional graphic displays could be provided by merely developing new
include files and providing the user interfaces to select them.

d. Reliability

CPL is an excellent development environment providing many built-in
error trapping routines. It was simple to provide validation of all user inputs requested
by the system. The language is also easily applied, thereby further reducing the
chances for errors.

The structured approach used to complete the design clearly presents the
proposed system. Programming problems were quickly identified and fixed. It allowed
us to have a clear idea of what we were doing while coding, much as an outline does
for an author. This further protected us from logic errors.

e. Integration of tools

The only tools available to this development effort were TEL-A-GRAF and
CPL. TEL-A-GRAF is a very powerful tool. but it is difficult for the average user to
manipulate. This situation forced one of us to be dedicated to the development of the
required graphs. That effort exceeded our time estimates due to the complexity of the
TEL-A-GRAF command language. On the other hand, CPL, a programming language
written specifically for Prime minicomputers, exploits the hardware to best advantage.

51




. v ph < ate N TENE T 2 ) & N P g ¥ Nah 28 a8 *al - " Yaf, et (] \ >, ol "alb al v = - N

The integration of the two environments was accomplished by building a
shell around TEL-A-GRAF that would allow the average user to make use of menus
to produce desired graphs, rather than use the TEL-A-GRAF command language.

J- Problems

Due to our initial lack of understanding of the importance of the data base,
this system was built with a file management orientation. It is now obvious to us that
this approach was in error. The system should have been built around a data base
management system. This would have produced a more flexible system.

Geographic separation from the users during the development increased the
difficulties. Close coordination with the users was then not possible, and resulted in
misunderstood requirements and goals. We only had access to the development
language via networking over FTS lines, which at times became unusable due to noise.
In addition, the version of TEL-A-GRAF locally available to us was not directly
compatible with that available at the user site. Consequently, last minute changes were
required before demonstrating to the users.

A major limitation of CPL is that sub-routines can not pass parameters up
to a calling procedure. Thus most “atomic” routines had to be programs. This resulted
in many small programs making up the system. Although this was not a problem for
us, it could be a problem for the users and those who will maintain the system.

2. Cost Center Analysis (microcomputer)
a. Introduction

This system was developed to address the most critical problem of the
minicomputer implementation, the lack of a data base management orientation. In
order to develop a system that allowed easy data maintenance, it became apparent that
a file management application would not be effective for an historical data base. This
version is integrated with a DBMS in order to provide the easy expandability which
would be beneficial to the users.

_Originally, this was to be a concurrent development of the Cost Center
Analysis system. Therefore, there was no consideration given for compatibility of the
“micro” development language with the “mini” development language, C and CPL
respectively. They were to address two separate development issues, and the language
used for each was irrelevant to the efforts.

The design of the data base is relevant to each since it could be applied to
either system. Oracle was therefore selected as the DBMS because it is available for

52

.. . .y . - [ D T S U ST TR S v .
Wo sl ..J_'i*f\f“f\- \J,\'r,_f o v('.'-"“/ J\J‘\'{‘\ V\J'& \'l','.'__. A ‘“.I\. R ,_.'_ W - ¥ N A -,

--------------- B



microcomputers, minicomputers and mainframes in general, and in particular is
scheduled for implementation at the shipyard on the Prime network. This will provide
the users greater flexibility.

b. Requirements _

Cost Center Analysis (microcomputer) hardware requirements are an IBM
PC/XT/AT with at least 640KB and a hard disk. A printer is optional for the output
print options.

The software requirements are the Oracle Data Base Management System
(DBMS), PC/MS-DOS, and the Cost Center Analysis and Graphic Utilities programs,
all installed on a hard disk.

¢. Module description and functions ‘

The hierarchy chart depicted in Figures 5.4 and 5.5 graphically describes
the interrelationships between the following program modules.

(1) Cost Center Analysis. This main module contains the three major sub-
modules of the system:

1. Cost Center Information
2. Command Level Entry
3. Graphics Displays
It provides the interface for Oracle and graphics. It also allows easy
access and display of Oracle.

(2) Graphics. This module allows the user to use already developed
graphs with data not obtained from Oracle directly, but input to a file by the user.
Oracle can also read specified data into a file form within the Cost Center Information
module. This data can then be plotted from within the graphics module.

{3) Command Level. This allows the user the opportunity to use Oracle at
the command level, through the User Friendly Interface (UFI). Ad hoc queries,
updates of the data base, deletions, insertions and other procedures can be
accomplished in this mode.

(4 Cost Center Information. This is the main menu driven shell for CCA.
It allows easy access to specified information and display of that information. CCI
also sends specified data to a file for the graphics routines to use.

(5) Budget VS Expenses. This ailows display and comparison of budget
and actual expense information by various categories. and interfaces data with
graphics for further displavs.

53

Rl L e S LA e P Pl b



PO

inoyien yioien jeweon qejien wnsien)  gjo01len  dlolen JiIoNen
Hwes ﬁ ’
pngien dsipapu| dxepnqio)
peuewsejdu) pelvewe|duwy|
1ON 10N 5
— e ]
ojujor ouidwy | | dxe"pr8 140 oquwod| | 10l WL e
AB|pWOY sonydesn

/

V20

(microcomputer).

-

Hierarchy Chart of CCA

Figure 5.4

54

AN



- O A

(6) Individual Display. This module displays budget vs expenses to date in
thousands of dollars for either Labor, Material, or Other, sorted by Cost
Function/Cost Class.

(7) Budget Summary. This displays budget by Cost Function/Cost Class
for the current fiscal year.

(8) Display Labor. Budget vs expense by Cost Function/Cost Class for
Labor are displayed.

(9) Display Material. Budget vs expense by Cost Function/Cost Class for
Material are displayed.

(10) Display Other. Budget vs expense for Other costs by Cost
Function/Cost Class are displayed

(11) Total Budger VS Expense. This module sums Labor, Material
and Other for budget and expenses to date by Cost Function, Cost Class, Cost
Function/Cost Class and Cost Center as requested, and sends the information to the
graphics utilities when directed.

(12) Total by Cost Function. This sums budget and expenses to date
by Cost Function and displays. It sends the information to a file for graphing, upon
request.

(13) Total by Cost Class. This sums budget and expenses to date by
Cost Class and displays. It sends the information to a file upon request for graphing.

(14) Total by Cost Function/Cost Class. It sums budget and expenses
to date by Cost Function;Cost Class and displays.

(15) Total by Cost Center. This module sums budget and expenses to
date for the entire Cost Center and displays. It sends the information to a file for
graphing upon request.

d. Implementation

The CCA system (microcomputer) is operational but not to the extent that
we originally hoped. The memory limitations of the PC prohibited us from linking
graphics with Oracle directlv. To perform the graphics. extra commands must be
initiated at the DOS level. This was not the original intent. The system indirectly links
Oracle with the graphics, which still accomplishes our original goal.

The czgree of difficulty in using C to drive both the graphics and Oracle
was underestimated at the outset of this project. Another limitation had to do with the
disk storage space needed to support all the products that were tied together. The

3S




yloejes

yiojes

jewejes

lewjeg

inoysjes | | inoyies

qelejes

qeyies

W

~/

N

"

Y0109 1 M T15) inoyien qejien
swnsjes wnsjes | | 19100108 ETELTLIS jo0jeg 1oales unjejes unjajes
wnsien 101109 o100 joneyn

Figure 5.5 Continued Hierarchy Chart of CCA (microcomputer).

D an an an s a ol

56

-.'. “I’\

»

» .')ii"\(‘ ‘e

-
s WPy

. )
o

S |

L
A\l

pd

R AL N

~'-l-'.’.¢‘...

o,

oy

TR N .:

X o.i 5

e

f.\”s’

P s



system we developed this on was aiready heavily loaded with other systems and thus
hampered our development. This initial prototype system will allow the user a chance
to see what a final system coulc ‘o, and to further direct efforts in the development of
future prototypes.

e. Usability

This analysis system was primarily designed for the inexperienced or casual
user. They would be individuals, such as managers, who have not yet learned the
Oracle command language, SQL, or never intend to learn it.

During the analysis portion of this project we identified the information
needs of the users. Queries were written within the “shell” to specifically address these
needs. So, the average user is not likely to require ad hoc queries, at least in the short
term.

However, we have included the ability for them to handle unexpected or
unanticipated questions, or to make necessary data modifications. This ability is
provided by our system through the Oracle UFI. This interface does require using the
command language, since the user will no longer have the menu support of the shell.

Advanced users who would tire of the system menus could enter the UFI
through the top-level menu. Occasionally, they might make use of the system, but if
they know the command language they will probably enter the UFI directly.

J- Expandability

As mentioned, ad hoc queries are supported through the use of the
command language option. The Command language allows the user to interface with
Oracle via the UFI as described above. The user’s manual (Appendix C) shows many
examples and possible approaches to retrieving information using UFI.

This system was designed to be used by only one Cost Center. However,
this is a prototype system that could be expanded to all Cost Centers within the
shipyard. To accomplish this, data base views of each Cost Center could be developed,
giving the manager, of a Cost Center access only to his own information. Higher
management could have access to all data as necessarv. Onlv minor adjustments
would be necessary to implement this, namely inserting another module in the
hierarchy above the CCI module allowing the specification of a Cost Center,
combination of Cost Centers, or all Cost Centers depending on the access level of the
requestor and his interest. The specific views can be provided through the data base

management system. The amount of data necessary to support just one more Cost

57

s '\;.\."\



Center would, however, double the amount of data. This would not only increase the
storage requirements, but would also increase the information retrieval time.
g. Reliability

Any large program written in C is suspect when the question of reliability
comes up. The strange and wonderful things that C programs can do when errors
occur can be truely awe inspiring. However, painstaking error traps have been built in
to counter all known problems. Each input from the user is checked for validity.
Numbers are checked to see if they are in range and if not, the user is returned to the
same menu. The user’also has the opportunity to review his inputs to insure that the
value inputed, was the value he really wanted.

B. GRAPHICS MODULE

After we constructed the initial structure chart we exploded both main modules:
the control module and the graphics module. Then we began the detailed design of the
graphics module by following the ROMC approach [Ref. 2]. The initial representations
were given to us by the user, who had been creating graphs for his own use on a
microcomputer using LOTUS 123. These graphs were time consuming to produce
because the data had to be extracted and inputed by hand.

The user wanted multiple graphs on one page which would summarize the data
more effectively. The first graph that he wanted was a bar graph of the budgeted

amounts for the Cost Center, broken down by Cost Function. On the same page with
that graph he wanted a plot of the budget versus the actual expenses as a function of
time (see Figure 5.6 ). This plot was applicable to either the total Cost Center or for
one of its Cost Functions.

Our methodology for designing the graphs paralleled the methodology we
incorporated in our DSS development: an iterative approach. These graphs were then
scrutinized and revised as necessary.

Most of the actual keying of the code was done 180 miles away from the
shipyard via telephone lines. The original coding iterations were done on the Naval
Postgraduate School’s IBM 3033, before entering on the Prime. The School. like the
shipyard, has TEL-A-GRAF and the code is transferable between systems, with one
exception. The window sizes created for the graphs on the IBM were slightly different
for the Prime. Therefore, complete testing could not be performed until we actually
went to the shipvard. We could test for coding errors, by observing a run. but the
terminal we used to input the code did not support the graphics.

58




FY 86 BUDGET FOR
COST CENTER 9110

e o o
o =
S
e
194 =L
i% BUDGET VS EXPENSES
34 ;‘_g COST CENTER 9110
pecs ALL COST FN
n ?—: 1JULY 1986 r 0
N K2
-9
(t 2
. -8
-
-7
od
%
<
» -6 <
i =
(o]
a
, - b
3 2
Zz
) . g
: 3
X, Legend -3
" A BUDGET
. X EXPENSE ,
; L1
f X » > |
o OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
END OF MONTH
)
N

Figure 5.6 Composite Graph, Bar Chart and Plot of Budget VS Expense.

. 59

N1 N AT M AT A L PR P e : o Y O 3 e, e ST e e e e L e e .
'?‘l'.o.:‘. " ”" 0 ,"'. . "f\" ( "‘f"' h ' ""’ AN T AN n” T N N AT T



R PR a5 Ao 20 s AV el sV al s a4t "ad "ad ‘ald "l Yol Yol ok 0,8 P Va) AN ERERENA NS NN SN LN W L RN

1. TEL-A-GRAF

As our first step we learned TEL-A-GRAF, the graphics system that we would
be using. “TEL-A-GRAF is a conversational computer graphics system that produces
publication quality charts and graphs [Ref. 12: p. A-3]."

The tutorial for TEL-A-GRAF [Ref. 12], walks the user through some simple
graphs. The command language is English-like and was easy to follow for the simpler
graphs. TEL-A-GRAF encourages the user to experiment when building graphs until
he gets the desired format; again an iterative approach.

A profile file tells TEL-A-GRAF which device the user is on, what his
secondary device is, and other facts necessary for TEL-A-GRAF to operate. If the ‘
user does not have a profile file, TEL-A-GRAF will prompt the user for the neceésary
information. For our system we wanted the control of TEL-A-GRAF to be
maintained by the control module. Therefore, a profile file must be established prior to
the use of this system for each user. A Sample profile file that was used when
developing the system is shown in figure 5.7 .

Figure 5.7 Sample TEL-A-GRAF Profile File.

TEL-A-GRAF can be used on a variety of devices. The primary device refers
to the .main device that the user wants to create his graphics on. When the commands
“GO.” or "'DRAW 1 2.” are issued the graphics file is created for the device named as
primary device. If the command "SEND" is issued the graphics file created is for the
secondary device.

TEL-A-GRAF also has the capability of creating a device independent
graphics file that can be used later on any graphics device, such as printers, plotters. or

-----



________

other graphics terminals. This is accomplished through the use of the Post Processor,

known as “POP”. By naming either the primary or secondary device as "POP”, a device
independent file will be created. This file can then be executed later using the
DISSPOP command. Appendix B provides further information on the use of TEL-A-
GRAF.

The profile file can be changed while in TEL-A-GRAF at the command level.
When the generate prompt of TEL-A-GRAF appears, a device or value of a profile file
can be changed by issuing a command such as “PRIMARY DEVICE IS POP.” This
command would change the primary device to the post processor for the remainder of
that session.

a. Composite Graph

Once we were familiar with the TEL-A-GRAF language, the actual coding
of the first graphs began. This was in itself an iterative process.. The basics learned
from the tutorial [Ref. 12}, and the specific requirements for these graphs were
aggregated to produce the finished product. Figure 5.6 shows the final graph for the
two initial graphs suggested by the decision maker. One of our main goals while
developing this code was to keep the graphics module independent. We designed the
graphics to run from a batch type mode. We assumed the data was in independent
files in the necessary format. This allowed us to concentrate on the display and not
worry at this point on how the data got to be in those files. This is a flexible
approach that will allow the shipyard to choose any data base system to complete the
implementation.’

Each graph required a data file and at least one include file. The data file
contained the formated data as TEL-A-GRAF would accept it. Figure 5.8 shows one
format that TEL-A-GRAF will accept. Other formats are discussed in Appendix B.

The include files contained the TEL-A-GRAF commands which set up the
graphs. The original include files contained the titles and labels for cost center 9110.
To change the title or labels to create a similar graph, a secondary include file was
created. This secondary include file changed title and label line commands in the major
include tile. This allowed the flexibility to create the same graph from different data.
These include files could also be called up by hand and changed line by line to fit a
different need of the user. This made the design of a modular system simpler. The first

3We recommend a reiational data base for flexibility. The data will be discussed
in detail later.

P I LR I e AR
LA T I L I I IS A S I ":';r:'.r- - -!'_\J' TP f.'xl'...{- J-J.f:.r_‘:_\ "




64
.399%11 3 %’.4567 4 3.34567 5 4.0002 6 4.78999 7 --

Figure 5.8 TEL-A-GRAF Data File.

include file contained the commands for a graph labelled for Cost Center 9110. If the
graph was to display a Cost Function, instead of the Cost Center, another include file
was needed to change the labels and title. When other Cost Centers are added to the
system, the same process will apply.
b. Triple Bar Graph

Once the initial graph was complete, we began the design of a new
representation. Based on our analysis, we determined that a bar graph which displaved
the total budgeted data, the budget as a straight line percentage of the elapsed fiscal
year, and the actual expense to date would be useful. This is basically the same
information displayed in the original composite graph. However, we felt that this
prototype should offer a choice of representations to the manager. One purpose of a
DSS is to provide the decision maker with the appropriate information in a format
with which he is comfortable. This allows the decision maker to choose one of the
formats. ’

The same iterative process was followed when creating the second zraph.
After repeated testing and manipulations, the graph was ready. This graph was also
created using the TEL-A-GRAF include files. This allowed for one basic command file
that the other includes build from. This strategy made the manipulations of the labels
only a matter of changing one line, rather than rewriting the entire program. The Jata

was again assumed to be already in place, properly formatted.

62



FY 86 BUDGET VS EXPENSES
COST CENTER 110

11 JULY 1986

3.5 1

2.5+

MILLIONS OF DOLLARS

454

...........................

............................

............................

1.8 - eememnnnnans

0.5+

2 n3

Legend
B3 BUDGET
BUDGET%

&l EXPENSES

.......................

114 15 16
COST FUNCTION

17

18 19

Figure 5.9 Triple Bar Graph for Cost Center 9110.

63

......

...............
...........



a8 8 88 8 4 8¢ 870 0'0 o° g tae €0t p 0 C g vah Vg taf P A0 vud tuf 48 tal ‘al Pal Sad gl takytado el

Figure 5.9 shows the finished graph. This graph summarizes and compares
the budget to expenses, both to the total budget and to the percent of budget as a
function of time. Although not specifically addressed, variances can be identified and
estimated using this graph.
c. Variance Analysis Graphs
The last graphs developed represented four bar graphs displayed on one
page. These graphs display variance of the Cost Center for overtime, straight time
Hours and Labor, Material, Other and Total. Again, the same iterative approach was
taken in coding. The data was also assumed to be present in the data file. The graphs
contained the following information: '
1. Percent Expended
2. Data Normalized on the Percent of Elapsed Time
3. Variance in Dollars
4. Percent variance
These graphs were suggested by the user. They are designed to fill a gap in the
analysis of variance. The exact manipulation of the data to attain these figures is
explained below. Figure 5.10 shows the structure and format of these graphs. A brief
description of each follows.
The percent expended shows the percent of elapsed time based on the date
of the data and the amount of the fiscal year elapsed. The remaining percentages
represent the percent of the budget expended. The formula for this is:

Percent Expended = Expense ; Budget

Labor is broken down into overtime and straight time. These are key areas of interest
to the manager because he usually has direct control over Labor.

The data normalized on percent elapsed time, normalizes the elapsed time
to one. This normalization changes the percent expended from the first graph into a
percentage of elapsed time. That is, if 20% of the budget was expended and 20% of
the vear had elapsed. the normalized value would be one, the same as elapsed time. [f
the normalized percentage is less than one, less has been spent in that category. If the
percentage is greater than one, more than the percentage was spent.

Normalized = Percent Expended ! Percent of Year’ 100




PERCENT EXPENDED 9110
100
= 80- B
& 60
=TT PO NS —————— R
[y
A 204 e emenssn - PR o ey e ’
0- : : ' ' : :
IR I N P LA LR
o <© S W o a\
DATA NORMALIZED ON PERCENT ELAPSED TIME
4
2 J . . X 1
T -
I
0 v r " n Y
’ o AW
oY e e Q- (€ G
c,\)“? &\© 0\3?3‘ \»\ﬁ' C A
VARIANCE IN DOLLARS
g L
3 0 . ' o1
""""" =<Q W A P e <8 N
=< \ W e N2 o .
PERCENT VARIANCE -
200 ; -'
0- )
-200 ? !
) |
a}?_),a
Figure 5.10 TFour Graphs for Variance Analysis. ®
65 v
L
»
N i:;f_;-f,sl"f*"fc P 'I:‘J,_r"l‘_" BN R ST N NN SN NI e e e S W e 8




—m

- =

¢ g A At g B {b ia et gl ; . g ashk’ T N T . N ¢ N . b M L LW LS LT LA ol * \ CICTY TN NN IO A8

Variance in dollars gives the dollar amounts of the variance. This is
important because the percentages can be deceiving. If a category has a large variance,
but only 2 small amount of money was budgeted, the dollar amount may be
insignificant. For items with large dollar amounts, small variances could involve large
sums of money and be much more significant to the financial situation.

Variance= Expense - (% of Year * Budget)

Percent variance displays the values as the percentage based on the
budgeted amount. This is the percent of the budget divided into the amount expended.

% Variance = Variance / (% of Year * Budget / 100)
2. Graphics on the Microcomputer

The implementation on the microcomputer followed the same design as the
implementation on the minicomputer for the graphics. The variance graphs, however,
were not implemented on the “micro.” The graphs produced and the completion of the
data base on the microcomputer, demonstrate the technical feasibility of this
implementation. However, there are limitations that must be considered.

The memory limitations on the micro did not allow us to implement a fully
interactive system. The graphics package used, GraphiC, combined with the data base
programs and the control programs would not run as an integral system due to
insufficient memory. This was resolved by having the control program interact only
with the data base. The control program would ask the user if he wanted a graph of
appropriate data. If the user responded positively, a data file would be created that
would be accessed by the gréphics program. The user would then leave the control
program. choose the correct program to run, and run it. The data file is accessed
automatically.

The graphic programs on the microcomputer were more complicated to code
than the TEL-A-GRAF graphics on the minicomputer. Compiling and linking slowed
down the iterative design process, but the same procedures for developing the
microcomputer graphics were followed. But formatting the output data was not a
problem since the data base management system and the GraphiC utilities were written
in a common language, C.

66




- VAR

S RN SO

Ay e, et 7 TRt kP et A 4%a ata 4 s %2 A% 40 Ata 4% 40 22 2% 82 200 B2 1% 442 4% 272 8°a 2'a Ve 2'a g'n dle f'a Q' gty gt PRV AL

C. DATA

The data was not a major concern for us during the first iteration with the
minicomputer, except for identifying a particular data element needed for each graph.
Since the shipyard was responsible for extracting the data, we concentrated on the
control program and the graphicss. When we began the microcomputer
implementation, the overall design was completed. However, this implementation
actually dealt with the data, so it became the central focus. Although we side stepped
the issue in the initial effort, we found that the data structure played a key role in the
design.

1. Data Base on the Microcomputer

Originally, we identified the origin of the data elements. The origin of the
data was the reports that were generated on the shipyard’s mainframe. However,
halfway through the analysis, the reports changed. The new reports from SABRS
contained the information in a variety of formats and was produced on the
minicomputer. This report (SBR-22A) summarized the data by Cost Function,;Cost
Class for each Cost Center. This was the best way to store the data for our data base
because all combinations of Cost Centers, Cost Function, and Cost Class can be
derived from this information, thus minimizing the storage of the data.

One problem occurred that caused our data base to be larger than originally
planned. Entries that do not have values must be entered as zero. This greatly
expanded the data base because many authcrized Cost Functions rarely use some
authorized Cost Classes. However if they are omitted. inconsistencies occur when the
budget and expense tables are joined in an operation. For example, if a particular Cost
Function/Cost Class did not have a budgeted amount, but did have a later expense, the
expense would be lost in 2 comparison. The tables of the data base are joined on the
Cost Function/Cost Class combination and if there is no value for a particular Cost
Function,; Cost Class, the value from the expense table is not included in the resuiting
joined table.

The result is that an entrv must be present for each authorized Cost
Function, Cost Class. The budget table contains only one value for each authorized
Cost Function/Cost Class. The expense table on the other hand, must contain a value
for each update. This means the table increases in size on each update by a constant.
If the update is made every two weeks, approximately 26 updates will have occured.

That means the expense table will be 26 times the size of the budget table.

67




s 97 a4 - - N A PATRUNVRE YR | g gty g¥ Ate A% A%, VA V. ab. st al,ata el Aty A¥aat. at TN U L R AT O O T T O T T Y I U YOIV UL LY VW LW

2. Historical Data Base ' , [
If an historical data base is desired for the DSS, an additional field will need -
to be added to the budget table: the fiscal year. All selects based on the current fiscal

vear will have to be identified by year, or by maximum fiscal year, if the next year’s
budget is not vet installed.
3. Data Base Design

We anticipate that the final system’s data base will be electronically updated.
The volume of the data is very predictable. The expense data will be appended at mid-
month and at the end of each month.

The data retrieval rate is estimated to be fairly low 10 to 20 times daily. At
critical periods in the fiscal year, the utilization will be much higher, such as the end of
quarters, prior to mid year review, and at the end of the fiscal year. The retrieval rates
at those times is estimated to double or triple.

Managers can allow others access to their data base with read only privileges.
Some information and views can also be restricted using the data base’s userids and ;
passwords. This can increase the utilization of the data base while still maintaining
control over the dissemination.

a. Bachman Diagram

Budget o

Expense

- -

Figure 5.11 Data Base Design Bachman Diagram.

The main relationship for this implementation is the one between budget
and expenses. As depicted in Figure S.11 this is a one to many relationship. Even if

b4 S

68

" Tt e e

-

g

LIPS .q'\f‘n"‘."'vf.q'."v--(',‘h‘-\\‘nl’."‘-'\f\-ﬁ\ > 4



\
FJ

)

. at R W 8 85 6% 82 874 BVa Atat2U gV At € Vol vk tal "op Fap 62p 6 ) S0 4.8 Y “tad INUNERENUNT WA W

budgets are developed monthly or quarterly the relationship holds. The newer budgets
simply supersede the older ones.
b. Relational Model
The record structures are depicted for the data base design (keys are

italicized):
1. BUDGET ( COST FUN NO. COST CLASS NQ, ST HOURS, OT HOURS,
ST LABOR, OT LABOR, MATERIAL, OTHER)
2. EXPENSE ( COST FUN NO, COST CLASS NO, DATE, ST HOURS, OT

F
OURS, ST LABOR, OT LA
¢. Normal Forms
Normalization is a process by which we attempt to minimize “anomalies” in

BOR, MATERIAL, OTHER)

the data base design. These anomalies generally can cause data inconsistencies, loss of
entire records during updating, and inappropriate relationships between different record
types when joining tables. The effort is to normalize to as high a degree as possible,
trading off retrieval performance and increasing interrelational constraints [Ref. 13].

In the discussion of normal forms, we do not attempt to justify our
normalization beyond the third normal form. We felt that the excessive interrelational
constraints would tend to make the data base less workable. In addition, all tables are
in first normal form, because of the lack of repeating groups in our data structures, so
discussions that further illuminate that point are not needed.

(1) BUDGET Table.

This table is in second normal form since all the non-key attributes rely
on all of the key (Cost Function number and Cost Class number). Additionally, all the
non-key attributes are independent of each other. For example, Hours (straight or
overtime) does not directly relate to Labor cost, since it requires computatiors and
reference to other schedules in order to be produced. That is the reason why both
Hours and Labor are listed. With the independent non-key attributes, there are no
transitive dependencies, placing Budget in third normal form.

(2) EXPENSE Table. The Expense table is similar in structure to the
Budget table. However, it has an additional attribute in the key, Date. All the non-
key attributes require reference to all attributes of the key, so this table is aiso in
second normal form. Again the non-key attributes do not directly relate to each other,
50 it is also in third normal form.

d. Interrelutional Constraints

69

LT NP B Y AT v

N ‘; { -:* .{;{ ',.:_.‘:', .{.;f;.,.. ;‘\.', . O O SRS PR _,.~'. :,l.:_q '_.:_._:‘. ..:...‘-'. .._‘._.‘-_,.‘-_. .. R _.‘_.' .‘_.‘~ Ny

ot e’




There are going to be a certain amount of interrelational constraints in any
data base. The important questions to consider are do the designers realize its
existence, do they understand why it is there, and are they in control of it. In this data
base the existence of the interrelations is largely a function of the nature of the
problem that the data base attempts to address. The greatest interrelational
dependency is caused by the Cost Function and Cost Class numbers. They are the
most integral pieces of data within the data base. Without them the tables that
contain them would be meaningless. They are the language for tracking costs of
operations within the Cost Centers of the Shipyard. They categorize the data.

Combining all the tables with these common attributes is not a sufficient
answer to reduce interrelational constraints, since that would reduce the normalization
of the tables, and increase redundancy. The trade-off is to keep this interrelational
constraint, since it requires the least overhead and maintenance.




VL. INTERPRETATION OF THE DEVELOPMENT EFFORT

A. ANALYSIS OF THE METHODOLOGY

The approach we applied to this development effort appears to have worked well
for this project. The requirements presented to us were not clear, since the users did
not have a concrete idea of what they specifically needed or wanted for this
information retrieval and display system. In addition, we did not have a clear
understanding of what was being asked of us, and what the effort would entail.

The methodology we selected forced us to be thorough in our analysis and
design, and gave us flexibility to alter development directions. We elected to follow a
combination approach, which we felt would best answer the needs and requirements of
this particular project. This pilot project was carried out within the framework of a
prototyping approach. The development environment follow the dictates of Yourdon
for a prototyping environment [Ref. 3: pp. 225-226]:

1. There is only a single user or at most a small group_of users who are ‘localized
in the sense that they work in the same organizational group and within the
same physical location.

The data model exists or can be easily created.

3. The application is small to medium.

Everyone agrees that the proto is only a ‘toy’ system and that it is intended
as nothing more than a model of the production’system

The prototype approach was essential. We were attempting to develop a svstem
based on an unclear problem statement and no prior experience; we required the slack
that this approach could provide. Meeting Yourdon’s premises further supported the
prototyping decision.

Our approach to prototyping was not simply to go forward and start writing lines
of code. Within this framework we applied structured analysis to conduct the analysis
of the present situation. We selected the structured tools in order to provide ourselves
with the clearest appraisal of the users’ present svstem. The structured design
following the analysis easily flows {rom the same tools and provides the users with a
clear documentation of how the system was designed. The resulting structured
specification of data flow diagrams, data dictionary and structure chart clarified our
understanding and assisted the coding efforts of the two phases.

71

O Y » »

N I T N G At a0 o ol T R T Y T T L e
' - " $ ) . ) s - » a A -l

P

WL LIRS

o oK

> Cx W Y Wy R AL



1. Documentation

The program design of the first project more closely followed the structured
design than the second did. The major reason is that during the second, the
orientation of the project shifted. The importance of the data base design became
apparent during the microcomputer implementation. The design and structure
documents are purposely made broad to keep from locking in on one system.
Although the constraints of hardware and software greatly limit the alternatives, by
keeping the design flexible and general, several alternatives became apparent.

In actuality, we built two prototypes in this project. Although neither are
complete in the sense of a production model, both contributed to the overall project.
Neither system as yet has the capability to be updated electronically. Yet both rely on
the concept of the electronic update based on the SABRS reports for their feasibility.
The minicomputer version has a data base in design concept only. The microcomputer
version does not have all the graphs implemented, and none of the variance analysis
graphics. However, although they are different systems, together they complement
each other by providing us with differing views of the same project.

The quick implementation of the microcomputer version proves that the
design was generic enough to be implemented on two completely different systems.
The design for the major modules was already completed. We quickly found that a
more detailed design was necessary to actually develop the data base. This is part of
the iterative process. Now the data base design is completed and could be
implemented on the minicomputer relatively quickly.

All the modules were designed to be independent, with low coupling. This
helped us create a system that could be implemented on two different systems. As the
final alternative is selected, only the automation boundaries and the timings of the
system will probably need to be changed in the design documentation.

2. Iterative Approach

The iterative approach also was very successful for us. Allowing the user to
see the progress and make changes throughout the project enhanced the
communications between the user and the developers. This communication is very
important to any methodology and no less with this one.

The iterative, prototyping approach proved its flexibility when the users
changed to a new accounting system, known as SABRS. SABRS changed the format
of the input data for CCA. Although not major, the changes demonstrated the
significance of built-in flexibility in a development effort.

72



The point of this discussion brought out by the structured techniques is that
the final system, whether prototype or production, must be maintainable. By this we
mean that it must be easily adapted and modified to meet the changes during the
iterative approach and changes in user requirements. Therefore, we strove to ensure

that the documentation of our prototype was as clear and as understandable as
possible.

3. Communication

Communication is not directly related to any methodology, but is a key factor
in any analysis. An analyst must be able to communicate with the user. During our
analysis phase, we conducted several interviews. After focusing on a decision, budget
control, we set up appointments to meet with various the budget experts within the
shipyard. At this point the project scope had not been fully defined and we were
looking for general information and procedures on the budgeting process. As svstem
analysts in an interview situation, we quickly found ourselves on the receiving end of
several questions. Instead of doing the interviewing we were being interviewed. We
lost control of the initial interview and, even though they were still cooperative, we
initially lost the interest of a potential user of a DSS.

The lessons learned from this interview were many. Interviews, especially
initial meetings, must be carefully planned. A brief summary of the questions, or the
type of questions that we were going to ask presented to the user prior to the interview
would have been a much better way begin. The problem definition should have been
defined better prior to the interview. The Term DSS was also used freelv, which
brought connotations of wonderful systems that have all the answers. Our system was

a pilot project, not a production system, and this fact should have been introduced up
front.

S W e & 8

We found that our interviews with the users were tainted by our unfamiliarity
and our own preconceptions of what they wanted. These problems were largely an -
outgrowth of our inability to ask the right questions, our lack of experience with the
interview process, and in some cases our incomplete technical knowiedge. Generally,
our abilities and interviews grew as our understanding of the system and our famulianity
with the users grew. The best interviewing technique that we found was knowing

ahead of time what to ask, and asking it in a manner that does not cause a defensive )
response. :

73

.
.

-
-
-

NN et T T T T e e A N S e e P T (g BT T T T2 G Sl




This is an area that is usually glossed over by most authors in the DSS arena.
Possibly most authors do not perceive a need. One answer might be that most
developers do not think they will make those “classical types” of human interaction

errors. To many, these issues may seem of little consequence. Finally, these
development efforts are completed by information specialists and not clinical
psychologists. Therefore, the tendency is to deal only on a cursory level with what is
not very tractable.

4. Remote Site Development

Not being able to be on-site during the development process was definitely a
liability. This fact more than any other slowed our progress. It was difficult to find
time to consuit with the users, and the distance of the commute precluded conferring
with the users over what we perceived as smaller matters.

On a couple of occasions those smaller matters were a lot more important
than we had thought. Additionally, a better job of analysis could have been done if we
had more opportunities to consult with the users. For example, the perception of
being considered outsiders to the organization might have been reduced. We would
urge any would be developers to spend a significant and consecutive block of time with
the users if at all possible.

B. RESULTS FROM CCA PILOT PROJECT

Based on our methodology and the resulting prototypes, several conclusions and
alternatives can be drawn. The first area of concern is the data extraction. The data
for the system must be extracted {rom SABRS. This extraction svstem is the kev for
continuance of alternatives based on this project, other than to stop any further
development at this time. The worth df the system has been demonstrated, making
this option unlikely. Once the data base is extracted a repository must be set up.

The data base approach is essential to this type of development. A file
management approach is too limiting and unwieldy for systems that frequently update
information: In a file svstem, either data files must be overwritten with new data, or if
new tiles are added with each update. the application program must be altered (or cach
new file. A pure file system of data management is useful only for a test system, not
for a "real world” system.

Therefore, the kernel of an info-mation display system should be a data base
management svstem (DBMS). This requirement also applies to DSS’s. The DBMS

74

L N VA T I Ca Ca e Ca D T WA A T A oL e e e e
LA A S R 1 T N 3 T ey AT A

-

et



reduces the amount of coding and design that the developers must use to build a DSS.
The capabilities of the overall system can be quickly enhanced without the design and
programming complexities. Some of the desired capabilities would be a sophisticated
command language, documentation utilities, easy data loading and deletion utilities,
user control, and security utilities. The flexibility of the DBMS is an outgrowth of the
degree of capabilities it possesses. Developers only need to design interfaces to the
DBMS.
1. Data Base Design

When designing an information system, a data reference is critical. The most
flexible data base system that we recommend is a relational data base. A relational
data base can offer several advantages as demonstrated in the microcomputer
implementation. A variety of information can be selected and compared from different
tables. Calculations can be made on the data at the data base level, allowing for fewer
intermediate programs to be necessary for formatting or scaling of data.

The relational data base we used on the microcomputer was Oracle. Oracle
offers several advantages to a system. First, Oracle is available for mainframe
computer, minicomputer, and microcomputer use. This means that a user who mayv
have access to both a minicomputer and a microcomputer needs to learn only one data
base system. The sharing of data and data extraction is also more attractive when the
data base systems are the same. Oracle’s command language is easy to learn by
anyone who knows a programming language. In fact, Oracle’s command language,
SQL, is non-procedural so it is more easily learned than BASIC. The user must onlv
understand the basic constructs of SQL and the logical implementation of those
constructs.

Documentation utilities assist the user in the development of the data
dictionary for the particular data base design. With them the user can obtain the
structure of the tables he has produced, a listing of the various tables and indices he
has developed (by name, structure type, and filetype), data elements (by name, type.
source, and definition), and a listing of the data structures showing the particular
elements that they contain. Oracle only provides some of these. For the sake of
clarity we created the tables to produce these definitions for our system in the
microcomputer implementation.

User control and security are easily implemented through Oracle. Users can

create views and deterrmine the types of access thev wish to assign to other users of



their data. Additionally, the data base administrator or the user acting as the data
base administrator can determine the types of access all users will have to the data
base.
2. Longterm Data Base Considerations

With the need of a historical data base clearly identified, the use of the
microcomputer alone does appear to be feasible. The amount of data and overhead of
a DBMS on a microcomputer would be prohibitive. Therefore, an extraction system is
necessary for the minicomputer. Once a data base is established on the minicomputer,
the microcomputer can extract the data for a particular cost center as needed or a user
could use a system implemented on the minicomputer.

¥

by 0 Wiy P

-
»
A~
e




VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The methodology we followed was a task organized approach. We felt that no
one approach of the major authorities on DSS development was complete in and of
itself. The task organized approach allowed for structured documentation tools to be
used with an iterative approach.

The iterative approach was central to our methodology. Design and
implementation must be accomplished in quick, as short as possible cycles, in this
iterative approach. This allows the developer to interact with the user, to obtain rapid
feedback on the progress and the direction of the project. Communication is very
important to a DSS project.

Often the problem definition in a DSS cannot be as precise as in a MIS project.
The semistructured or unstructured nature of DSS projects can make a clear cut
problem definition impossible. By approaching a problem that is not verv well detined
in quick, rapid, iterative steps, the problem will become clearer as the iterations
progress.

The proper environment must be established before a DSS can be initiated.
When initiating a DSS, minimization of risk is crucial. If an initial project is not
successful, it may be a long time before subsequent attempts at a DSS are made, even
f a DSS is needed.

In order to minimize risks, a champion or strong enthusiast must be found. This
is a person who can envision the benefits of a DSS. If there is no proponent of the
system, or it is forced on someone. the iterative approach will not be effective. User
relations is of paramount importance and must be established immediately. Being
prepared and not bringing any surprises is the best way to keep your relations in good
standing. : .

Once the enthusiast is tound. 1 decision must e ‘ocused upon. The DSS shouid
focus on one decision or one problem. This limits the scope and allows the developer
10 narrow in on one area. A user, upon hearing the term DSS, may get visions of a
system that will answer his every question within seconds. By focusing on one

decision. the developer can guide the user through the project without huilding falce

hopes ar nusleading expectations.




3 gat ‘aLg MR URUY UHUW LWL W A1 "I CATA RN EN SR

Within our methodology, we utilized structured techniques during the analysis
and design. These techniques included the use of data flow diagrams, structure charts,
and a data dictionary. We feel that these are among the best documentation tools
available today. The use of these tools reduce maintenance costs later. Further
development is also made easier with the structured documentation. This is especially
true when the original developers are not going to be involved in any further
development.

When the enthusiast is found, the decision is identified and the structured tools
of analysis and design are ready, Sprague and Carlson’s ROMC approach further
focuses the effort [Ref. 2]. Representations let the developer focus on the displays the
user desires, the logical design. With the representations, the data and data base must
be investigated and documented. The data base is the keystone of the DSS.
Operations should follow easily with the representations. The manipulation of data
ard displays are the required operations. Memory aids remind the user of what needs
to be done or what can be done. The controls for the system can then be designed to
interface the parts into a functioning, useful system.

During our iterative steps, we began a similar development on a completeiv
different system. Although this is not recommended for every DSS development, it
helped us focus on problems that we had been overlooking in the initial prototype. By
using the same design documented with structured techniques, we were able to quickly
develop the similar systern on a microcomputer. This gave us the opportunity to
compare the systems. This comparison helped identifv some problems on both svstems
that may not have been identified unul later in the project.

B. RECOMMENDATIONS

Mare Island Naval Shipvard has several alternatives available to them at this
point. We recommend that the data base for the minicomputer be implemented. This
will allow a better comparison between the minicomputer and the microcomputer.
Since the documentation is available from the microcomputer implementation and the
design of the data base is complete and can be used with any relational or Jata hase
that is logically relational, this step should encompass only 20 manhours, fewer if the
programmer is familiar with the tools. Next, or even concurrently, the extraction of
the data from SABRS must be completed. The extraction of the data is not a trivial

problem, although technically it is feasible. The extraction is necessary to get the data

............

.. ‘ l\ \ s ‘. ‘ \ "y l\ .I~‘ .‘-bl.' ." i.. "‘ ."n - \. ‘.‘ ‘~ ~.".'.‘.. ...h\- .‘- .~. \~- e . - - . » . ... ". .-.'.-.'. .. L) -.' . "
hﬁﬁ'ﬁﬁi\%&h&'&'&*mm&mm N o oy e o

--------



into the data base whether it is on the minicomputer or the microcomputer. We
estimate the data extraction from SABRS into a data base to be a 160 manhour job.
Our estimate is based on our work with this project and not on any previous data

extraction experience.

With the data base and data extraction, data integrity and accessibility will have
to be defined. Since an historical data base is desired, the data base should not be abie
to be changed by the normal user. This can be accomplished easily in a data base
system such as Oracle.

Once the data base is established and the extraction system is in place, several
alternatives must be decided upon. If the system does not appear to be feasible, the
project can be stopped. If the project continues, additional cost centers can be added
iteratively. This would be a safe course to follow. In that case, the control programs
would have to be modified to include the new cost centers, and the graphics modules
for each new graph would need to be written. These would be the modules that are
appended onto the main module for each graph.

The feasibility of tying CCA in with SABRS is another possibility. SABRS offers
the user a "wi.at if” capability. If SABRS could be integrated with the graphics of
CCA, a more powerful DSS would resuit at a minimal cost. The difficulty and
compatibility of the systems should be determined when the extraction of the data is
accomplished.

Whether the minicomputer implementation or the microcomputer
implementation is better is another question that must be answered. A
microcomputer shouid not be the repository for a large historical data base. However,
a microcomputer could be used as the workspace for the decision maker. This would
allow the decision maker the opportunity to change his data as he wishes without
affecting the centralized data repository. Microcomputers allow the user to view the
graphics at his desk, where the minicomputer CCA would require a graphics terminal
or a hard copy to be created for the decision maker.

The minicomputer should be the repository for an historical data base. This will
simplify the extraction problem, {rom minicomputer to minicomputer. The graphics
modules on the minicomputer are easier to create and maintain, and a sophisticated
user can learn TEL-A-GRAF at the command level, creating his own graphics. This is
much more difficult on the microcomputer. The graphics on the microcomputer are

written in C and are not written in a command language stvle like TEL-A-GRAF.

79

L ol Aol A

R Aol Aol




Can ok e a2

Si an o an a4

T Ty T Vv PUTEEFFT VW Y R "NEEE.Y VY VR _ K v ¥ ¥ ¥ u

R

- =y

C. SUMMARY
The best way to approach a DSS problem is with a DSS methodology. An
iterative approach that uses the tools of structured analysis and design provides the

developer with the best of both worlds. The necessary documentation for a project is
complieted and the short cycles of the iterative approach help to promote
communications.

Mare Island Naval Shipyard should complete the data base implementation and
the data extraction system. Expanding that system to include all the cost centers,
iteratively, one at a time, is a minimal risk alternative. Interfacing CCA directly with
SABRS would be another inexpensive alternative. Whether the networked
minicomputers or the microcomputers are most desirable to a decision maker is still
questionable. Perhaps it should be left to the individual decision maker to decide.

Further research is indicated in the area of data extraction. The usefulness of the
microcomputers in the offices in five years is another research question that can be
investigated. Finally, the direction that the DSS should take after the successful
implementation of the CCA is an important area for follow-on research. This would
include an overall design ¢{a 2SE for the Shipvard.

80

----- -

L2 2P PR LI L T I N A B I S A U Y PR S L “® » N M Te T Lt ™ e Te LT et
N S R A R o S A A S A D S S S S L L L A A L AR AN AN



ir e Vao La¥ ok kbt kb e 4 . Yy v rrTToToY sap sab oot €3 Tah v R fal ‘b b

APPENDIX A
STRUCTURED SPECIFICATION

1. DATA FLOW DIAGRAM
Data flow diagrams show the “flow of data, not of control.” The symbols used
are [Ref. 4: p. 40]:
1. The named vector (called a data flow), which portrays a data path.
2. The bubble (called a process), which portrays transformation of data.
3. (Two parallel straight lines) which portray a file or data base.
4.

The box (called a source or sink), which portrays a net originator or receiver of ‘
data - typically a person or an organization outside the domain of our study. )

“The Data Flow Diagram is documentation of a situation from the pcint of view of the
data.” [Ref. 4: p. 41] It will provide the user a clear understanding of the present
situation, and also the data required for the operation of the system. In addition, any {
errors in the system description can be more easily identified by other analysts.

The Data Flow Diagram is developed hierarchically. In this case the Top Level ;
diagram is in Table 4, the First Level diagram is in Table 5, and the Second Level
diagram o Process 1.0, of the First Level, is in Table 6

2. MINISPECIFICATION
We were not concerned with the exact details of how the users accomplished the
processes in the Data Flow Diagram. The primary consideration was to get a general
idea of what was going on, model it, and attempt to develop a system that would assist )
them.

1.1 Select Data
1. Gather Budget Input Reports provided by the Comptroller Department.
2. Select the data to be used for the desired report.
1.2 Insertion of data
1. Input the selected data to a data file.
2. The extracted data is used to prepare the desired report.
2.0 Prepare Reports
1. Input the management query
2. Identify the type of report that will answer the query.
3. Determine if:

81




L ovat el at o el At el At tad tad "t Yal Yab tat Pou Wa@ ‘ol tad ta@ ‘o fat tay Tad iat Vel tat. atovatt

Ratata'aRatatotato et - aie atotate gtoaty gt

ot

p
TABLE 4
TOP LEVEL DATA FLOW DIAGRAM

g
: Management

Inputs
E P Query Query
} Response
! Cost

Center
) MEIO Requirements Analysi
/ ) ysis
‘ and Constraints
Budge
Rep%rt Extracted
¢ Overhead Information Database
r Expense
; (Cost
Class) Budget Constraints
Yy
Comptroller

*  Overhead expenses (cost class), or

»

W R R NOS " TEEERE Y T R O O Y v T T RN

5. Provide query response to management.
p 3.0 Prepare Budget

I, ldentifv Comptroller budget constraints

82

2. Identify MEIO requirements and constraints.

) e e T e e e v A R A
L“AL&',\ e -\ .“: _\'_\J_.\,\ . l.f-\‘. At -:: “:.3!.. L‘:'h-:\.:‘ \.ﬂx‘ (~ Jﬁhhhwu W h\nh

*  Extracted data [rom budget input reports will be needed, or

Actual to budget comparison will support the report selected.

. -

............

Manipulate and format the input data as requested in the management query.

10 Vs tta £12 8% &% 'l 4"



VV UL P @) WUV Y T

TABLE 5

FIRST LEVEL DATA FLOW DIAGRAM

Extracted Data

Extracted
Data Base

Extracted

Reports

Extract

Prepare
Reports

Budget Request

Overhead
Expenses

3.0

Inputs

Prepare

MEIO
Requirements

Budget

Data Report

SABRS

Budget

and Constraints Overhead
Expenses
Budget (Cost Class)
Constraints
Comptroller
83

. -

" a - "J'_:.‘;-':.‘.:,

’ ] LI P L L A P AT
2.t .-":F’ PGSl TN S T AR A S A Py, g

7

EAEALRLY

., ¢
-

‘. n_‘ "l s

........
.....



TABLE 6
SECOND LEVEL DATA FLOW DIAGRAM OF PROCESS 1.0

1.2
Insertion
of Data

to File

Extracted
Data

Selected
Data

‘Data Processing \

Request and identifv budget request inputs within MEIO.
Develop MEIO overhead expenses (cost class).
Obtain management approval for the budget.

AR

Submit to the Comptroller.

4.0 Monitor Budget Performance
1.  Analyze extracted data from SBR-22A and SBR-22B.
2. Determine progress and errors, if any.
3.  Report to management if requested.

3. DATA DICTIONARY
This section provides a rigorous description of the data that is depicted in the
Data Flow Diagram. Before the completion of this section we had only a cursory '
understanding of tixe data involved. The disciplined analysis, which involved breaking
larger data flows into data elements, brought a great deal of clarity to our
understanding of the data.
The Data Dictionary is organized alphabetically to assist the reader in locating
particular documents or data elements.

ACQUISITION OF MINOR PROPLRTY (68) =

34




L 2% 2 2 a¥¢ 4 n'i.8'8 8°8 2 3 g o° 4 U a6 B8 S R R N 0 g A e A 0 g b $ag og a8 48 *a% Vab tad tad ¥

* COST OF PURCHASED OR
MANUFACTURED MINOR PROPERTY,
WHICH IS DEFINED AS THOSE COSTING
LESS THAN $1000 *

ACTUAL MATERIAL AMOUNT =
* TOTAL DOLLAR AMOUNT OF MATERIAL COSTS
INCURRED TO DATE WITHIN A COST FUNCTION *

ACTUAL OT HOURS =
* OVERTIME MANHOURS CHARGED TO
DATE WITHIN A COST FUNCTION *

ACTUAL OT LABOR AMOUNT =
* TOTAL DOLLAR AMOUNT OF OVERTIME LABOR
CHARGED TO DATE WITHIN A COST FUNCTION *

ACTUAL OT M/P/D =
* OVERTIME MAN PER DAY ACTUALLY INCURRED TO
DATE WITHIN A COST FUNCTION *

ACTUAL OTHER =
* TOTAL DOLLAR AMOUNT OF OTHER
INCURRED TO DATE WITHIN A COST FUNCTION *

ACTUAL ST HOLURS =
* STRAIGHT TIME MANHOURS CHARGED TO
DATE WITHIN A COST FUNCTION *

ACTUAL ST LABOR AMOUNT =
* TOTAL DOLLAR AMOUNT OF STRAIGHT TIME LABOR
CHARGED TO DATE WITHIN A COST FUNCTION *

ACTUAL ST M/PD =
* STRAIGHT MAN PER DAY ACTUALLY INCURRED TO
DATE WITHIN A COST FUNCTION *

ACTUAL TOTAL AMOUNT =
* TOTAL DOLLAR AMOUNT INCURRED FOR A COST

85



FUNCTION *

ADMINISTRATION (9112) =
* ALL LABOR AND OTHER COSTS IDENTIFIABLE TO THE
ADMINISTRATION OF THE DATA PROCESSING OFFICE AND
OVERHEAD COSTS NOT ASSIGNABLE TO OTHER
FUNCTIONAL SUBDIVISIONS *

AVE OT RATE =
* AVERAGE HOURLY RATE FOR OVERTIME (BASED
ON INDIVIDUAL RATES) *

AVERAGE BASE =
* AVERAGE HOURLY RATE ACCELERATED BY 32-1/2% TO
ACCOUNT FOR BENEFITS AND LEAVE *

BUDGET CONSTRAINTS =
* CONSTRAINTS SET BY THE SHIPYARD COMPTROLLER (IE.
ANNUAL LEAVE WILL NOT EXCEED 14%) *

BUDGET REQUEST INPUTS =
* MANAGEMENT REQUESTS FOR INCLUSION OF PARTICULAR
ITEMS WITHIN THE DEPARTMENTAL BUDGET *

BUDGET VS ACTUAL PERFORMANCE REPORT (SBR-22A) =
ISSUE DATE + DATA DATE +
{COST CENTER} + {COST FUNCTION}
+ [COST CLASS) + {ST HOURS) +
{OT HOURS) + {ST M/P,D} + {OT
M/P/D} + {ST LABOR} + {OT LABOR}
+ {MATERIAL AMOUNT)} + {OTHER AMOUNT)
+ (TOTAL AMOUNT)]

BUDGETED MATERIAL AMOUNT =
* TOTAL DOLLAR AMOUNT OF MATERIAL
BUDGETED TO BE INCURRED FOR THE
FISCAL YEAR WITHIN A COST FUNCTION *

BUDGETED OT HOURS = .




* OVERTIME MANHOURS BUDGETED FOR THE FISCAL
YEAR WITHIN A COST FUNCTION *

BUDGETED OT LABOR AMOUNT =
* TOTAL DOLLAR AMOUNT OF OVERTIME LABOR
BUDGETED FOR THE FISCAL YEAR TO BE INCURRED
WITHIN A COST FUNCTION *

BUDGETED OT M/P/D =

* OVERTIME MAN PER DAY BUDGETED FOR THE
FISCAL YEAR WITHIN A COST FUNCTION *

BUDGETED OTHER =
* TOTAL DOLLAR AMOUNT OF OTHER
BUDGETED TO BE INCURRED FOR THE
FISCAL YEAR WITHIN A COST FUNCTION *

BUDGETED ST HOURS =

* STRAIGHT TIME MANHOURS BUDGETED FOR THE FISCAL
YEAR WITHIN A COST FUNCTION *

BUDGETED ST LABOR AMOUNT =
* TOTAL DOLLAR AMOUNT OF STRAIGHT TIME LABOR
BUDGETED FOR THE FISCAL YEAR TO BE INCURRED
WITHIN A COST FUNCTION *

BUDGETED ST M/P'D =

* STRAIGHT MAN PER DAY BUDGETED FOR THE
FISCAL YEAR WITHIN A COST FUNCTION *

BUDGETED TOTAL AMOUNT =
* TOTAL DOLLAR AMOUNT BUDGETED FOR THE
FISCAL YEAR FOR A COST FUNCTION *

CATEGORY TITLE = * FUNCTION COST CLASS *

CONSUMEABLE SUPPLIES (12) =
* MATERIAL COSTS OF CONSUMEABLE.
REUSABLE, AND MINOR NON-CONSUMEABLE

87

% % % 3

ay oy ww

.
- P L TP T T TP TN WU ST S ST NP S TR

R N VN A T e i e e e R e e At u AT e A AT T AT T et T et A e e T s TR TR TG B

- » « n.'h . \. '.-'.-'. q_-_: -* I ) .\ C e - Yy - .' o SRS Iy L‘.‘.'. A .*L

Y
l‘.“\l"c s



| SUPPLIES AND MATERIALS NOT

j OTHERWISE CHARGEABLE TO ANOTHER
| COST CLASS, OR AS DIRECT MATERIAL
| TO PRODUCTIVE JOB ORDERS *

CONSUMEABLE SUPPLIES AND INSTALLATION (97) =
* COST OF CONSUMEABLE SUPPLIES RELATED TO
THE ADP FUNCTION; ALSO CHARGED WITH IN-
HOUSE COSTS ASSOCIATED WITH THE
INSTALLATION OF ADP MINOR PROPERTY *

CONTRACTUAL SERVICES (96) =
* COSTS OF CONTRACTUAL SERVICES (FOR
EXAMPLE, TIME SHARING OR DATA ENTRY
SUPPORT) OTHER THAN THOSE SERVICES
SPECIFIED AS CHARGED TO COST CLASSES
94AND 95 *

CONTROL AND SCHEDULING (9116) =
* ALL LABOR AND OTHER COSTS
IDENTIFIABLE AS OVERHEAD OF THE
CONTROL AND SCHEDULING
FUNCTION, EXCEPT FOR COSTS
IDENTIFIED TO COST FUNCTION
9119 *

COST CENTER = COST CENTER NUMBER + COST CENTER NAME

COST CENTER NAME =
[DATA PROCESSING OFFICE/MANAGEMENT
ENGINEERING OFFICE]

COST CENTER NUMBER = [9]1]1;4 0]

COST CLASS (NUMBER) =
[SUPERVISION GRADED (02)] NON-SUPERVISION
GRADED (03)] SHOP GENERAL (04 MATERIAL
(04)] CONSUMEABLE SUPPLIES (12) UNALLOCATED

88




i ST P bR O
NI PN PPN L R S T AL AN .

(19)I TRAVEL (30)|
DUPLICATING/MICROFICHE/ILLUSTRATORS (33)
TRAINING (39) ACQUISITION OF MINOR PROPERTY
(68) SUPERVISION GRADED (91)] NON-
SUPERVISION, ANALYSIS AND PROGRAMMING (92)|
NON-SUPERVISION GRADED, OTHERS (93) RENTAL
AND COMMUNICATION (94)] MAINTENANCE (95)|
CONTRACTUAL SERVICES (96) CONSUMEABLE SUPPLIES
AND INSTALLATION (97)) MINOR PROPERTY (98)|
TRAINING (99)]

COST CLASS NO. = * COST CLASS NUMBER *

COST FUNCTION =
(MIS IMPROVEMENT ADP PROGRAMS (9111){

ADMINISTRATION (9112){ PROGRAMMING (9113){
RENT OF EQUIPMENT AND INSTALLATION COST (9114){
OPERATIONS (9115){ CONTROL AND SCHEDULING (9116){

EDP OPERATIONS (9117)| EAM OPERATIONS (9118)|

NAVSHIPS NSY MIS PROGRAM (9119){ MANAGEMENT
ENGINEERING OFFICE ADMINISTRATION (9142){
MANAGEMENT SYSTEM SUPPORT (9143){
QC/PRODUCTIVITY (91dd){]

DATA DATE = * EFFECTIVE DATE OF DATA USED FOR THE REPORT *

DEPARTMENTAL SUMMARY BY COST CLASS AND SHIPYARD TOTAL
(BUDGET VS ACTUAL)=
ISSUE DATE + DATA DATE +
{COST CENTER} + {COST CLASS} +
(ST HOLURS} + /OT HOURS} = (ST M.P'D}
+ (OT M:P'D} + {ST LABOR} + {OT LABOR)
+ {MATERIAL AMOUNT)} + (OTHER AMOUNT}
+ {TOTAL AMOUNT)}]

DUPLICATING MICROFICHE ILLUSTRATORS (33) =
* COST OF ALL PURCHASED

89

-t



mmmmmwvvv“muv AR

PRINTING, REPRODUCTION AND
DUPLICATING WHEN NOT CHARGEABLE
TO A PARTICULAR CUSTOMER ORDER .

EAM OPERATIONS (9118) =
* ALL LABOR AND OTHER COSTS IDENTIFIABLE
AS OVERHEAD OF TIIE EAM OPCRATIONS
FUNCTION, EXCEPT FOR COSTS IDENTIFIED TO
COST FUNCTION 9119 *

EDP OPERATIONS (9117) =
* ALL LABOR AND OTHER COSTS IDENTIFIABLE
AS OVERHEAD OF TIIE EDP OPERATIONS
FUNCTION, EXCEPT FOR COSTS IDENTIFIED TO
COST FUNCTION 9119 *

FUNDS ADMIN (CODE XNO.) =
* CODE OF FUNDS ADMINISTRATOR FOR
MANAGEMENT ENGINEERING AND
INFORMATION OITICE (014,016) *

INPUT DATA =
[COST CENTER/FUNCTION BUDGET VS ACTUAL
PERFORMANCE REPORT (SBR-22A) DEPARTMLENTAL
SUMMARY BY COST CLASS AND SIIHPYARD TOTAL
(BUDGET VS ACTUAL) (SBR-22B)]

ISSUE DATE = * DATE REPORT WAS SUBMITTED TO USCR *
MAINTENANCE (95) = * MAINTENANCE COSTS OF ADP EQUIPMENT *

MANAGEMENT ENGINEERING OFTICE (9142) =
* ALL LABOR AND OTHER
COSTS IDENTIFIED AS OVERHEAD OF
THE DIRECTOR OF MANAGEMENT
ENGINEERING OFFICE, AND OTHER
COSTS WIIHCH ARE NOT ASSIGNABLE TO

90

E N SN )
---------------------------
..................

R N A R S e



t 'e® Yot an.at, a8 gt q_‘al, gt o g € taat Cat o ab, (. aen gt 228 4", gty abe ato"gh 10202 2% 2'a 2% 2%a £'2 8'2 A'n 2%, . : Y e gt [y

ANOTHER FUNCTION OF THE MEO *

MANAGEMENT SYS SUPPORT (9143) =
* ALL LABOR AND OTHER COSTS FOR
PERFORMING THE MEO FUNCTION *

MANAGER QUERY =
* AD HOC QUERIES CONCERNING BUDGET PREPARATION,
CONTROL AND VARIANCE ANALYSIS *

MATERIAL (04) = * SYNONYM FOR SHOP GENERAL *

MATERIAL AMOUNT =
[BUDGETED MATERIAL AMOUNT + ACTUAL MATERIAL
AMOUNT + PERCENTAGE OF MATERIAL AMOUNT +
MATERIAL VARIANCE]

MATERIAL VARIANCE =
* ACTUAL OT LABOR MINUS THE AMOUNT OF THE
BUDGETED OT LABOR THAT SHOULD HAVE BEEN
EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND
BUDGET) *

MEIO REQUIREMENTS AND CONSTRAINTS =
* CONSTRAINTS SET BY THE MEIO MANAGEMENT *

MEN GROSS = * TOTAL NUMBER OF PERSONNEL *

MEN IVB =
* COMPUTED TOTAL NUMBER OF PERSONNEL MINUS
THOSE ON LEAVE *

MEN OTHER = * PERSONNEL BORROWED BETWEEN COST CENTERS *
MEN TOTAL = * THE TOTAL OF MEN IVB AND MEN OTHER *

MINOR PROPERTY (98) =
* PURCHASED COSTS OF ADP MINOR PROPERTY. WHEN
THAT COST IS LESS THAN S1000 OR THE ITEM HAS

91

y e e e e e e T e e TR N T e N L T T e e e T T AN T G S u
Z’d‘c a%f\i"ﬂ‘?”twa O (.r.r.r.(\a. f(_.-.r.. N I A I A S A I A A AT



R LY o aY - o - - A IR

A USEFUL LIFE OF TWO YEARS OR LESS REGARDLESS
OF COST *

NAVSHIPS NSY MIS PROGRAM (9119) =
* ALL LABOR AND OTHER COSTS
IDENTIFIABLE TO DEVELOPMENT
AND MAINTENANCE OF NAVSEA
NAVSHIPYD MIS ASSIGNMENTS *

NON-SUPERVISION GRADED (03) =
* INDIRECT LABOR COST OF NON-
SUPERVISORY GRADED PERSONNEL *

NON-SUPERVISION, ANALYSIS AND PROGRAMMING (92) =
* LABOR COSTS OF PERSONNEL WHILE
ENGAGED IN ADP ANALYSIS AND PROGRAMMING *

NON-SUPERVISION GRADED, OPERATIONS (9115) =
* ALL LABOR AND OTHER COSTS IDENTIFIABLE AS
OVERHEAD FOR SUPERVISING AND ADMINISTERING
THE OPERATIONS DIVISION, EXCEPT FOR COST
IDENTIFIED TO COST FUNCTION 9119 *

OT HCURS =
[(BUDGETED OT HOURS + ACTUAL OT HOURS -~ PERCENTAGE
OF OT HOURS + OT HOURS VARIAMCE]

OT HOURS VARIANCE =
* ACTUAL OT HOURS MINUS THE AMOUNT OF THE
BUDGETED OT HOURS THAT SHOULD HAVE BEEN
EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND
BUDGET) *

OT LABOR AMOUNT =
[BUDGETED OT LABOR AMOUNT + ACTUAL OT LABOR
AMOUNT + PERCENTAGE OF OT LABOR AMOUNT + OT
LABOR VARIANCE]

92

............................... ~
1

et el

........
----------



)

e YWY

OT LABOR VARIANCE =
* ACTUAL OT LABOR MINUS THE AMOUNT OF THE
BUDGETED OT LABOR THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT
OF THE PERIOD ELAPSED AND BUDGET)

OTM/PD =
[BUDGETED OT MAN PER DAY + ACTUAL OT MAN PER
DAY + PERCENTAGE OF OT M/P/D + OT M/P/,D
VARIANCE]

OT M/P'D VARIANCE =

* ACTUAL OT M/P/D MINUS THE AMOUNT OF THE
BUDGETED OT M/P,D THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT

OF THE PERIOD ELAPSED AND BUDGET)

OTHER COSTS =

* OTHER BUDGETED COSTS INCLUDING PRIMARILY
CONTRACTS AND TRAVEL *

OTHER (PRIMARILY CONTRACTS AND TRAVEL) =

[BUDGETED OTHER + ACTUAL OTHER + PERCENTAGE OF
OTHER + OTHER VARIANCE]

OTHER VARIANCE =

* ACTUAL OTHER MINUS THE AMOUNT OF THE
BUDGETED OTHER THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT
OF THE PERIOD ELAPSED AND BUDGET)

OTHERS (OPERATIONS) (93) =

* LABOR COSTS OF PERSONNEL (OTHER
THAN THOSE SPECIFIED AS CHARGED TO
COST CLASS 91 AND 92) WHOSE

PRINCIPAL DUTIES ARE DIRECTLY
RELATED TO CONDUCTING OR SUPPORTING

93




Wb et gt tad atapt taf fat et AN va@ gl tg¢ tgR el ot ey call st tad tph alocafoaloiatotaty ata gty gt g¥ Vo aty gl glg afa-gt . e 8'a

THE ADP FUNCTION *

OVERHEAD EXPENSES BY COST CLASS =
[FUNDS ADMIN (CODE NO.) + COST
CENTER NO. + STRAIGHT TIME WORKING
HOURS + {COST CLASS NO.} + {CATEGORY
TITLE} + {MEN GROSS} + {MEN IVB} + {MEN
OTHER} + {MEN TOTAL} + {STRAIGHT HOURS}
+ {AVERAGE BASE} + {STRAIGHT LABOR SS} +
{OVT MEN) + {OVT HOURS} + {AVE OT RATE} +
{OVT LABOR) + {TOTAL MNDAY} + TOTAL
HOURS} + {TOTAL LABOR SS} + TOTAL MATER}
+ {OTHER COSTS} + {TOTAL COST} + {TOT
EXPEN}Y

OVT HOURS = * NUMBER OF OVERTIME HOURS *

OVT LABOR =

* PRODUCT OF OVERTIME HOURS AND AVERAGE
OVERTIME RATE *

OVT MEN = * PERSONNEL ON OVERTIME (NOT USED) *

PERCENTAGE OF MATERIAL AMOUNT =
* PERCENTAGE OF BUDGETED MATERIAL
AMOUNT INCURRED TO DATE WITHIN A
COST FUNCTION *

PERCENTAGE OF OT HOURS =

* PERCENTAGE OF BUDGETED TOTAL
OVERTIME TIME MANHOURS ACTUALLY INCURRED TO
DATE WITHIN A COST FUNCTION *

PERCENTAGE OF OT LABOR AMOUNT =
* PERCENTAGE OF BUDGETED OVERTIME LABOR
AMOUNT INCURRED TO DATE *

PERCENTAGE OF OTHER =
* PERCENTAGE OF BUDGETED OTHER

94

LI e R
o 8k

P XA,

R T



T US \ROAN

IS5 4

AU R O M U N A U WU N R W R WU W WU WU W WOV PR SRR NN PF RN

AMOUNT INCURRED TO DATE WITHIN A
COST FUNCTION *

PERCENTAGE OF ST HOURS =
* PERCENTAGE OF BUDGETED TOTAL STRAIGHT
TIME MANHOURS ACTUALLY INCURRED TO
DATE WITHIN A COST FUNCTION *

PERCENTAGE OF ST LABOR AMOUNT =
* PERCENTAGE OF BUDGETED STRAIGHT TIME LABOR
AMOUNT INCURRED TO DATE *

PERCENTAGE OF TOTAL AMOUNT =
* PERCENTAGE OF BUDGETED TCTAL
DOLLAR AMOUNT INCURRED TO DATE
WITHIN A COST FUNCTION *

PROGRAMMING (9113) =
* ALL LABOR AND OTHER COSTS IDENTIFIABLE AS
OVERHEAD OF THE ANALYSIS AND PROGRAMMING
DIVISION, EXCEPT FOR COSTS IDENTIFIED TO
COST FUNCTION 9119 *

QC/PRODUCTIVITY (9144) =
s ALL LABOR AND OTHER COSTS ASSOCIATED
WITH THE PRODUCTIVITY IMPROVEMENT PROGRAM *

QUERY RESPONSE =
* BUDGET ANALYST RESPONSE TO AD HOC QUERIES*

RENTAL AND COMMUNICATION (94) =
* ALL ADP EQUIPMENT RENTALS,
INCLUDING RELATED ANCILLARY
COMMUNICATION EQUIPMENT RENTALS;
ALSO CHARGED WITH TELEPHONE
COMMUNICATION SERVICE COSTS
ASSOCIATED WITH UNIQUE OR
DEDICATED LINES USED IN SUPPORT

95

g P S T T T T O R .
S el 3l el




‘RD-A183 284 DSS (DECISION SUPPORT SVSTEH) DEVELOPHENT EFFORTS AT
HE MARE ISLAND NAVAL SHI YARD(U) NRV POS TGRADUATE
SCHOOL MONTEREY CA M F RALL ET AL. F/6 5/4




se
AL IR ; ey
calega a ML il oA . . . .

133 3
S EEE]

EEEFEPTIN

s

14

125

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

\

s
e

“e'..n‘h

p
(o
m -~
B

*
¥

»
"
\,\‘,\.
Rl

B2

L .
A NN g
)
\'*




'\l. -.‘l.u W,

OF THIS EQUIPMENT *

RENT OF EQUIPMENT AND INSTALLATION COST (9114) =
* ALL COSTS OF ADP/EAM RENTAL AND MAINTENANCE
INCLUDING THE COST OF RENTING TERMINALS
EXCLUDING MINICOMPUTERS CHARGEABLE TO
BENEFITING COST CENTERS AND COST CLASS 37 *

SHOP GENERAL (04) =
* INDIRECT COSTS OF SUPPLIES AND LABOR OF
NON-SUPERVISORY UNGRADED PERSONNEL WHILE
ENGAGED IN WORK OR A GENERAL OVERHEAD
NATURE BUT NOT OTHERWISE CHARGEABLE TO
ANOTHER COST CLASS OR AS DIRECT LABOR *

ST HOURS =
[BUDGETED ST HOURS + ACTUAL ST HOURS + PERCENTAGE
OF ST HOURS + ST HOURS VARIANCE]

ST HOURS VARIANCE =
* ACTUAL ST HOURS MINUS THE AMOUNT OF THE
BUDGETED ST HOURS THAT SHOULD HAVE BEEN
EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND
BUDGET) *

ST LABOR AMOUNT =
[BUDGETED ST LABOR AMOUNT + ACTUAL ST LABOR
AMOUNT + PERCENTAGE OF ST LABOK AMOUNT + ST
LABOR VARIANCE]

ST LABOR VARIANCE =
* ACTUAL ST LABOR MINUS THE AMOUNT OF THE
BUDGETED ST LABOR THAT SHOULD HAVE BEEN
EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND
BUDGET) *

96

L A T T DDA SN MR O EVA A S o 8t I

KT E AL

s P

SN Y]
3



L a3

STM/PD =

[BUDGETED ST MAN PER DAY + ACTUAL ST MAN PER DAY
+ PERCENTAGE OF ST M/P/D + ST M/P/D VARIANCE]

ST M/P/D VARIANCE =
* ACTUAL ST M/P/D MINUS THE AMOUNT OF THE
BUDGETED ST M/P/D THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT
OF THE PERIOD ELAPSED AND BUDGET)

STRAIGHT HOURS = * SYNONYM FOR STRAIGHT TIME WORKING
HOURS *

STRAIGHT LABOR $§ =
* PRODUCT OF AVERAGE BASE AND STRAIGHT HOURS *

STRAIGHT TIME WORKING HOURS =
* LABOR HOURS WITH LEAVE
SUBTRACTED (NUMBER OF HOURS *
2008 HOURS AVAILABLE IN A YEAR)*

SUPERVISION GRADED (02) =
* INDIRECT LABOR COST OF GRADED
SUPERVISORY PERSONNEL WHILE ENGAGED IN
THE SUPERVISION OF OTHERS *

SUPERVISION GRADED (91) =
* LABOR COST OF PERSONNEL WHILE ENGAGED
IN THE SUPERVISION AND DIRECTION OF
PERSONNEL PERFORMING ADP FUNCTIONS *

TOTAL AMOUNT =
[(BUDGETED TOTAL AMOUNT + ACTUAL TOTAL AMOUNT

+ PERCENTAGE OF
TOTAL AMOUNT + TOTAL

VARIANCE]

TOTAL COSTS =
* TOTAL BUDGETED COSTS (SUM OF TOTAL LABOR, TOTAL

97

T e S S R R LA LR SN A0 LAV RORLALRTR



O R T R A O A N D R O R O R A U U U LS LN U AP LA LW L W A U A M YOS ORI RO OO

MATER, AND OTHER COSTS *
TOTAL HOURS = *SUM OF ST HOURS AND OT HOURS *

TOTAL LABOR S§ =
* DOLLAR SUM OF THE PRODUCT OF ST HOURS AND AVE
BASE AND THE PRODUCT OF OT HOURS AND AVE OT RATE *

-

TOTAL MATER = * TOTAL BUDGETED MATERIAL COST *

-

TOTAL MNDAY = * TOTAL PERSONNEL (OVERTIME AND MEN) *

TOTAL VARIANCE = .
* ACTUAL TOTAL MINUS THE AMOUNT OF THE
BUDGETED TOTAL THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT
OF THE PERIOD ELAPSED AND BUDGET)

' TRAINING (39) =
* INDIRECT EXPENSES INCIDENT TO ORGANIZED
TRAINING PROGRAMS EXCEPT APPRENTICE AND
NUCLEAR TRAINING PROGRAMS *

TRAINING (99) =
* TRAINING COSTS IN SUPPORT OF THE ADP FUNCTION *

TRAVEL (30) = ‘
* COST OF APPROVED TRAVEL, INCLUDING SUBSISTENCE,
WHEN NOT CHARGEABLE TO A PARTICULAR CUSTOMER
ORDER OR COST CLASS BY TYPE *

UNALLOCATED (CODING REJECTS) (19) =
¢ COSTS WHICH CANNOT BE
[DENTIFIED WITH A CUSTOMER
ORDER OR AN ESTABLISHED
EXPENSE ACCOUNT *

98 ]

DN D BTN A " NI a7 A AN NN g e



4. AUTOMATED DATA DICTIONARY
a. Method
The data dictionary is automated, although it is not an integral part of the
Cost Center Analysis system. Instead of being a part of the system, it explains the

various parts of the the system. This data dictionary was set in the form of data tables
in Oracle. Although some of this information can be generated from Oracle system
utilities, it was felt that more specific information was necessary for this system'’s
documentation.

b. Data Representation

The following tables represent two information tables. These are
representative of the structure shown in the system data structure diagrams (Bachman
diagrams). Although this system was designed for personnel who are intimately
familiar with the Cost Center terminology, we attempted to explain as much as
possible data meanings and abbreviations. This was done to facilitate the work of
follow-on designers and implementors.

In addition, there are five systems description tables which provide the data
base structure. These make up a ready reference for follow-on implementors, reducing
the chances of misunderstanding.

c. Data Maintenance

This data dictionary has been designed for an extracted data base. It would
be kept current by biweekly downloads from the shipyvard’s Prime Network. As such
the system would grow to considerable size by the end of the fiscal year.

These system updates wouid not change the structure of the data dictionary as
depicted. It would only change the number of records within the tables.

d. Data Security

Physical security controls are adequate for this system. Physical internal
controls will ensure the integrity of the data base. These controls are already in place
within the office workspaces.

If information security became more critical, these controls could be
implemented through the Oracle DBMS, by using passwords and controlling access.

e. Back-up and Recovery

This is provided by the Oracle DBMS as part of its services to the users.

Oracle uses a before image file to provide the recovery information.

99




f. Budget Table Structure

UF1>SELECT * FROM COL WHERE TNAME = '‘BUDGET’

TNAME

SCALE NULLS

BUDGET

NOT NULL

BUDGET

NOT NULL

BUDGET

I NULL

BUDGET

I NULL

BUDGET

I NULL

BUDGET

4 NULL

BUDGET

4 NULL

100

COLNO CNAME
COLTYP WIDTH

CHAR

CHAR

3
NUMBER

4
NUMBER

5
NUMBER

6
NUMBER

4
NUMBER

4

2

ST

oT

ST

oT

COST_FUN_NO

COST_CL_NO

HOURS

HOURS

LABOR

LABOR

11

MATERIAL
1



BUDGET 8 OTHER

NUMBER 11
4NULL

8. Expense Table Structure

UFI>SELECT * FROM COL WHERE TNAME = ‘EXPENSE’

TNAME COLNO CNAME
COLTYPWIDTH WIDTH
SCALE NULLS
EXPENSE 1 COST_FUN_N\O
CHAR 4
NOT NULL
EXPENSE 2 COST_CL_\O
CHAR 2
NOT NULL
EXPENSE 3 DT
DATE 8
NOT NULL
EXPENSE 4 ST HOURS
NUMBER 7
I NULL
EXPENSE [ oT HOLRS
NUMBER 7
I NULL
EXPENSE 6 ST LABOR
NUMBER 1
4NULL

101

: [ TR AL P ST R L e e e v
- PR R A T R Ry ST PR BT I YRR ST SV SRR VAT O SRR UL S LR S R TR S Y
A A RTINS ST TP RP N B ST SPIT I SE ISP DIIG AP NP N AP RN & o AT A AP PO AP NP7




m

EXPENSE’ 7 . oT LABOR
NUMBER 11
4 NULL
EXPENSE 8 MATERIAL
‘ NUMBER i
4 NULL
EXPENSE 9 OTHER
NUMBER 11
4 NULL
h. System Files

1. System File Listing Structure

UFI>SELECT * FROM COL WHERE TNAME = ‘FILES'

- TNAME COLNO CNAME
COLTYP WIDTH
SCALE NULLS
FILES 1 FILEID
CHAR 1S
{ NULL
FILES 2 STRUCTYPE
CHAR 8
NULL
FILES 3 FILETYPE
CHAR 8
NULL




w— de 2 e

FILES 4 LOCATION
CHAR 8
NULL
FILES 5 LASTMOD
' CHAR 9
NULL
FILES 6 COMMENTS
CHAR 70
NULL

2, System File Listing

UFI> SELECT * FROM FILES;

FILEID STRUCTYP FILETYPE LOCATION LASTMOD
COMMENTS
BUDGET TABLE DATA DDISK 11-DEC-86

CONTAINS BUDGET FOR ST HOURS, OT HOURS, ST LABOR, OT LABOR,
MATERIAL AND OTHER

EXPENSE TABLE DATA D DISK  11-DEC-86

CONTAINS EXPENSES FOR HOURS, LABOR, MATERIAL AND OTHER BY
DATE

BCF INDEX DATA D DISK  11-DEC-86
INDEX BY COST FUNCTION FOR BUDGET TABLE

BCC INDEX DATA D DISK  11-DEC-86
INDEX BY COST CLASS FOR BUDGET TABLE

ECF INDEX DATA D DISK 11-DEC-86
INDEX BY COST FUNCTION FOR EXPENSE TABLE

ECC INDEX DATA D DISK  11-DEC-86

103

gt i ol |




INDEX BY COST CLASS FOR EXPENSE TABLE

i. Programs and Modules

1. Programs Listing Structure

SCALE NULLS

PROG 1
CHAR
NULL
PROG 2
CHAR
NULL
PROG 3
CHAR
NULL
PROG 4
CHAR
NULL
PROG 5
CHAR
NULL

2. Programs and Modules of the System

UFI> SELECT * FROM PROG;

104

UFI> SELECT * FROM COL WHERE TNAME = 'PROG";

TNAME COLNO CNAME
COLTYPWIDTH

14

35

70

......

......... RN L .'_‘-_.- ‘-‘-_- '-\.\v- - . .'_’
WM 'J‘J_WM“‘; o e e e A g ;‘-iJ AT AP AP AP R AP AT AP

PROGID

FULLID

LANGUAGE

LASTMOD

COMMENTS




7AN AN LR AR AT AN ANRS NS NEAN R EASTIERE R L el At 4

PROGID FULLID LANGUA LASTMOD

COMMENTS
! CCA COST CENTER ANALYSIS
' C 11-DEC-86
MAIN MODULE CONTAINS THE THREE MODULES OF THE SYSTEM
GRAPHICS GRAPHIC DISPLAY OF DATA
C 11-DEC-86
ALLOWS USER TO USE DEVELOPED GRAPHS
COMDLEYV COMMAND LEVEL
C 11-DEC-86
ALLOWS USER TO USE ORACLE AT THE COMMAND LEVEL
CCl COST CENTER INFORMATION
C 11-DEC-86
MAIN MENU DRIVEN SHELL FOR ORACLE
CFI USER FRIENDLY INTERFACE
C 11-DEC-86
ORACLE UTILITY
BUD_EXP BUDGET Vs EXPENSES
C 11-DEC-86
DISPLAY AND CO\APARISO\ ON BUDGET AND EXPENSE INFORMATION
INDVDISP INDIVIDUAL DISPLAY
C 11-DEC-86

BUDGET VS EXPENSES BY LABOR, MATERIAL OR OTHER

GETBUD BUDGET SUMMARY
C [1-DEC-86
DISPLAYS BUDGET BY COST FUNCTION,COST CLASS

TOBUDEXP TOTAL BUDGET A EXPENSE
C 11-DEC-86

SUMS LABOR, MATERIAL AND OTHER FOR BUDGET AND EXPENSES :
105 ~N

A

A

A

]

.

-:

Mmmwmmmm“.y N B P A Ao 2 N e AP




GETLAB DISPLAY LABOR
C 11-DEC-86
BUDGET VS EXPENSE BY COST FUNCTION;COST CLASS FOR LABOR

COMMENTS
GETHOUR DISPLAY HOURS
C 11-DEC-86
BUDGET VS EXPENSE BY COST FUNCTION/COST CLASS FOR HOURS
GETMAT DISPLAY MATERIAL
C 11-DEC-86

BUDGET VS EXPENSE BY COST FUNCTION/COST CLASS FOR MATERIAL

GETOTH DISPLAY OTHER
C 11-DEC-86
BUDGET VS EXPENSE BY COST FUNCTION,COST CLASS FOR OTHER

SELFUN SELECT FROM EMPLOYEE

ORACLE 11-DEC-86
SELECT FROM BUDGET BY COST FUNCTION

GETTOTF TOTAL BY COST FUNCTION

C 11-DEC-86
SUMS BUDGET AND EXPENSES BY COST FUNCTION

GETTOTC TOTAL BY COoSsT CLASS

C 11-DEC-86
SUMS BUDGET AND EXPENSES BY COST CLASS

GETTOTFC TOTAL BY COST FUNCTION/COST CLASS
C 11-DEC-86
SUMS BUDGET AND EXPENSES BY COST FUNCTION/COST CLASS
GETSUM TOTAL BY COST CENTER
C 11-DEC-86

SUMS BUDGET AND EXPENSES FOR THE ENTIRE COST CENTER

106

.. e

Fa X ar Sy g g

O




mmmmmmwmmmmmm“m—‘w‘_._._.__..-.,__]

| SELHOUR SELECT FROM BUDGET
| ORACLE 11-DEC-86
SELECT HOURS FROM BUDGET TABLE

SELLAB SELECT FROM BUDGET
. ' ORACLE 11-DEC-86
SELECT LABOR FROM BUDGET TABLE

SELMAT SELECT FROM MATERIAL
' ORACLE 11-DEC-86
E SELECT MATERIAL FROM BUDGET TABLE

SELOTH SELECT FROM BUDGET
ORACLE 11-DEC-86
SELECT OTHER FROM BUDGET TABLE

SELEHOUR SELECT FROM EXPENSE
ORACLE 11-DEC-86
SELECT HOURS FROM EXPENSE TABLE SELELAB SELECT FROM
EXPENSE ORACLE 11-DEC-86
SELECT LABOR FROM EXPENSE TABLE

- SELEMAT SELECT FROM EXPENSE
ORACLE 11-DEC-86
SELECT MATERIAL FROM EXPENSE TABLE

SELEOTH SELECT FROM EXPENSE
ORACLE 11-DEC-86
SELECT OTHER FROM EXPENSE TABLE

SELBFUN SELECT FROM BUDGET
ORACLE 11-DEC-86
SELECT FROM BUDGET BY COST FUNCTION NO.

SELEFUN SELECT FROM EXPENSE
ORACLE 11-DEC-86
SELECT FROM EXPENSE BY COST FUNCTION NO.

107




= e 1y W -

-

-y ov O b S e

SELBCL SELECT FROM

ORACLE 11-DEC-86
SELECT FROM BUDGET BY COST CLASS

SELECL SELECT FROM

ORACLE 11-DEC-86
SELECT FROM EXPENSE BY COST CLASS

SELBCFCL SELECT FROM

ORACLE 11-DEC-86
SELECT FROM BUDGET BY COST FUNCTION/COST CLASS

SELECFCL SELECT FROM

ORACLE 11-DEC-86
SELECT FROM EXPENSE BY COST FUNCTION/COST CLASS

SELSUM SELECT FROM

ORACLE 11-DEC-86
SELECT TOTAL FROM BUDGET

SELSUMA SELECT FROM

ORACLE 11-DEC-86
SELECT TOTAL FROM EXPENSE

J. Data Elements
1. Data Elements Table Structure
UFI> SELECT * FROM COL WHERE TNAME = 'ELEMENTS";

TNAME COLNO CNAME

COLTYP WIDTH
SCALE NULLS

108

N .

BUDGET

EXPENSE

BUDGET

EXPENSE

BUDGET

EXPENSE




ELEMENTS 1
CHAR
NOT NULL
ELEMENTS
CHAR
N\NULL
ELEMENTS
CHAR
NULL
ELEMENTS 4
CHAR
NULL
ELEMENTS 5
CHAR
NULL
ELEMENTS 6
CHAR
NULL

2. Data Elements Listing

UFI> SELECT * FROM ELEMENTS;

ELEMENTID FULLID
UPDATEFREQ COMMENTS
COST_CL_NO COST CLASS NUMBER

SELDOM SPECIFIES COST CLASS BY NUMBER

COST_CL_NO COST CLASS NUMBER
SELDOM SPECIFIES COST CLASS BY NUMBER

109

WATERY W F Wy

ELEMENTID

FULLID

TYPE

SOURCE

UPDATEFREQ

COMMENTS

TYPE SOURCE
CHAR BUDGET

CHAR EXPENSE




COST_FUNC_NO COST FUNCTION NUMBER CHAR BUDGET
SELDOM SPECIFIES COST FUNCTION BY NUMBER

COST_FUNC_NO COST FUNCTION NUMBER CHAR EXPEXNSE
SELDOM SPECIFIES COST FUNCTION BY NUMBER

DT EXPENSE DATA DATE DATE EXPENSE
SEMIWEEKLY SPECIFIES THE DATE OF THE EXPENSE DATA

OTHOURS BUDGETED HOURS OVERTIME NUMBER BUDGET
SEMIWEEKLY SPECIFIES HOURS BUDGETED FOR THE COST CENTER

STHOURS BUDGETED HOURS STRAIGHT TIME NUMBER
BUDGET SEMIWEEKLY SPECIFIES HOURS BUDGETED FOR THE COST
CENTER
OTHOURS EXPENSED HOURS OVERTIME NUMBER EXPENSE
SEMIWEEKLY SPECIFIES HOURS EXPENSED BY THE COST CENTER

[ STHOURS EXPENSED HOURS STRAIGHT TIME NUMBER
EXPENSE SEMIWEEKLY SPECIFIES HOURS EXPENSED BY THE COST
CENTER

E OTLABOR BUDGETED LABOR COSTS OVERTIME NUMBER

’ BUDGET SEMIWEEKLY SPECIFIES LABOR BUDGETED FOR THE COST
CENTER
STLABOR BUDGETED LABOR COSTS STRAIGHT TIME NUMBER
BUDGET SEMIWEEKLY SPECIFIES LABOR BUDGETED FOR THE COST
CENTER
OTLABOR EXPENSED LABOR COSTS OVERTIME NUMBER
EXPENSE SEMIWEEKLY SPECIFIES LABOR EXPENSED FOR THE COST
CENTER

i STLABOR EXPENSED LABOR COSTS STRAIGHT TIME NUMBER

EXPENSE SEMIWEEKLY SPECIFIES LABOR EXPENSED FOR THE COST
CENTER

110




“Wm“-_---ﬂ T MR NI AT A ATUE T L FIPIET R FE Frsruyes wees=

MATERIAL BUDGETED MATERIAL COSTS NUMBER
BUDGET SEMIWEEKLY SPECIFIES MATERIAL BUDGETED FOR THE
COST CENTER

MATERIAL EXPENSED MATERIAL COSTS NUMBER
EXPENSE SEMIWEEKLY SPECIFIES MATERIAL EXPENSED FOR THE
COST CENTER

OTHER BUDGETED OTHER COSTS NUMBER BUDGET

SEMIWEEKLY SPECIFIES OTHER BUDGETED FOR THE COST CENTER

OTHER EXPENSED OTHER COSTS NUMBER EXPENSE
SEMIWEEKLY SPECIFIES OTHER EXPENSED FOR THE COST CENTER

k. System Element Hierarchy

1. System Elements Hierarchy Table Structure

UFI> SELECT * FROM COL WHERE TNAME = 'CONT’;

TNAME COLNO CNAME COLTYPE WIDTH SCALE
NULLS
CONT 1 ID1 CHAR 15 NULL
CONT 2 TYPE!I CHAR 10 NULL
CONT 3 ID2 CHAR 16 NULL
CONT 4 TYPE2 CHAR 10 N\NULL

2. Systems Elements Hierarchy Listing
UFI> SELECT * FROM CONT;

[ID1 TYPEI ID2 TYPE2

11

-

MM&{;&MMJ;&{:& NS TN I A A T O IR A NN S O RS F




EXPENSE
EXPENSE
EXPENSE
EXPENSE
EXPENSE
EXPENSE
EXPENSE
EXPENSE
EXPENSE
BUDGET
BUDGET
BUDGET
BUDGET
BUDGET
BUDGET
BUDGET
BUDGET

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

3. System Process Table Structure

UFI> SELECT * FROM COL WHERE TNAME =

TNAME

SCALE NLULL

PROCESS

PROCESS

PROCESS

COLNO
l
.20
2
10
3
20
AP TS

F————n——mv i

hdaid gy |

COST_FUN_NO ELEMENT
COST_CL_NO ELEMENT
STHOURS ELEMENT
STLABOR ELEMENT
OTHOLURS ELEMENT
OTLABOR ELEMENT
MATERIAL ELEMENT
OTHER ELEMENT
DT ELEMENT
COST_FUN_NO ELEMENT
COST_CL_\O ELEMENT
STHOURS ELEMENT
STLABOR ELEMENT
OTHOURS ELEMENT
OTLABOR ELEMENT
MATERIAL ELEMENT
OTHER ELEMENT
‘PROCESS’;
CNAME COLTYP WIDTH
ID1 CHAR
NULL
TYPEI CHAR
NULL ,
ID2 CHAR !
\ULL 1
12
LAy ' N 'e‘-.-.‘ ~~~~~ CACEDN '.-,;"f ----- AN



hmM'x

PROCESS

4. Process Listing

4
10

TYPE2
NULL

UFI> SELECT * FROM PROCESS;

ID1

ccA

CCA

cca
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
COMDLEV
CCl

ca

CCl

BAR
TRIPBAR
PLOT
PLOT
COMBO
COMBO
COMBO
UFl

UFl

UFI

UFI

LUFI1

LUFl1

UFI

«

TYPEI

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

113

ID2
GRAPHICS
COMDLEV
cCl

BAR
TRIPBAR
PLOT
COMBO
LFI
BUD_EXP
EMPINFO
JOINFO
GRAF
GRAF

BLD
GRAFI
GRAF
GRAFI
BUD
EMPLOYEE
JO_EMP
JOB_ORD
COST_FUNC
COST_CLASS
BUDGET
EXPENSE

CHAR

TYPE2
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
FILE

FILE

FILE

FILE

FILE

FILE

FILE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

...............

1
i
A
jn
o
J
e

P A




T

W

BUD_EXP
BUD_EXP
BUD_EXP
INDVDISP
INDVDISP
INDVDISP
INDVDISP
GETBUD
TOTBUDEXP
TOTBUDEXP
TOTBUDEXP
TOTBUDEXP
GETLAB
GETLAB
GETHOUR
GETHOUR
GETMAT
GETMAT
GETOTH
GETOTH
SELFUN
GETTOTF
GETTOTF
GETTOTC
GETTOTC
GETTOTFC
GETTOTFC
GETSUM
GETSUM
SELHOUR
SELLAB
SELMAT
SELOTH
SELEHOUR
SELELAB

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

14

GETBLD
INDVDISP
TOTBUDEXP
GETLAB
GETMAT
GETOTH
GETHOLR
SELFUN
GETTOTF
GETTOTC
GETTOTCF
GETSLM
SELLAB
SELELAB
SELHOLR
SELEHOUR
SELMAT
SELEMAT
SELOTH
SELEOTH
BLUDGET
SELBFUN
SELEFUN
SELBCL
SELECL
SELBCFCL
SELECFCL
SELSUM
SELSUMA
BUDGET
BUDGET
BUDGET
BUDGET
EXPENSE
EXPENSE

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
TABLE

PROGRAM
PROGRAM
PROGRAM
PROGRANM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
TABLE

TABLE

TABLE

TABLE

TABLE

TABLE




SELEMAT
SELEOTH
SELBFUN
SELEFUN
SELBCL
SELECL
SELBCFCL
SELECFCL
SELSUM
SELSUMA

S. UFIFILES
UFI files can be used to create tables in Oracle. These files allow the user to
input the information using an editor rather than interactively with Oracle. The format
that Oracle accepts new data is also shown with the INSERT command. Two samples
of UFI files are shown below. Neither is complete as it stands. Only a small number
of records that need to be read into the tables are shown.
authonzed cost function cost class must have an entry for both budget and for each
date of expense even if the values are all zeroes.
a. BUDGET.UF1
SYSTEM MANAGER
SET ECHO OFF
SET VERIFY OFF
SET TERMOLT ON
SET SCAN OFF
CREATE TABLE BUDGET(COST_FUN_NO CHAR(4) NOT NULL,
COST_CL_NO CHAR(2) NOT \NULL,

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

OTHOURS NUMBER(7.1),
STHOURS NUMBER(™.1),
OTLABOR NUMBER(11.4),
STLABOR NUMBER(11,4),
MATERIAL NUMBER(11.4),
OTHER NUMBER(11.4))

SET SCAN ON

el
N OO S

1S

15“#!‘4-!'1;.

EXPENSE
EXPENSE
BUDGET
EXPENSE
BUDGET
EXPENSE
BUDGET
EXPENSE
BUDGET
EXPENSE

.~ s

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

In actuality, every

. . L T T T
R LR A N Sl R A Ve T e el e ala




INSERT INTO BUDGET VALUES(9112, '02°, '0°, 0", ‘0,

0, 0, 0°);
INSERT INTO BUDGET VALUES(9112, '03", '0', 0, ‘0,
0, 0, o),
INSERT INTO BUDGET VALUES(9112', ‘'04°, ‘0", "201°, ‘0,
‘3152, 0, o),
INSERT INTO BUDGET VALUES('9112', ‘11°,°0°, 0°, ‘0,
0, 0, 0°);
INSERT INTO BUDGET VALUES('9112', 12,0, 0, 'O,
0, "2000°, ‘4500°);
INSERT INTO BUDGET VALUES('9112', '9t’, "414°, "3000°, ‘1567',
'100000°, 0, ‘0'); INSERT INTO BUDGET VALUES(9112°, '93°, "37',
‘1800° 2000,
'17540°, 0, 0,
INSERT INTO BUDGET VALUES('9119", 43',°0°, 0°, ‘0,
0, 0, 0%,
INSERT INTO BUDGET VALUES(9119", '54',°0°, 0°, ‘0,
0, ‘507340, 0);
INSERT INTO BUDGET VALUES('9119’, ‘68, 0", '0°, °0',
0", o, o),
COMMIT:

CREATE INDEX BCF ON BUDGET(COST_FUN_NOY,
CREATE INDEX BCC ON BUDGET(COST_CL_NO);
UPDATE BUDGET SET LABOR = LABOR !/ 1000, MATERIAL = MATERIAL
1000,
OTHER = OTHER . 1000;

GRANT SELECT ON BUDGET TO PUBLIC;
EXIT

b. EXPENSE.UFI
SYSTEM/MANAGER
SET ECHO OFF
SET VERIFY OFF
SET TERMOLT ON
SET SCAN OFF
CREATE TABLE EXPENSE(COST_FUN_NO CHAR(4) NOT NULL,

16

" ¥t A O e N R P R P ey
mm.&m:&;ﬁzjr.xh.lb.g.mem



F—-_—-———_mvm___u B |

COST_CL_NO CHAR(2) NOT NULL,
DT DATE NOT NULL,
OTHOURS NUMBER(7,1),
STHOURS NUMBER(7,1),
OTLABOR NUMBER(11,4),
STLABOR NUMBER(11,4),
MATERIAL NUMBER(11,4),
OTHER NUMBER(11,4));
SET SCAN ON
INSERT INTO EXPENSE VALUES('9112’, '02, '17-OCT-86",° 0,

0, 0, 0 0, 0);
INSERT INTO EXPENSE VALUES('9112', 03, '17-OCT-86', " 0,
0, 0, 1707, 0, 0
INSERT INTO EXPENSE VALUES('9112’, "04, "17-OCT-86",© 10,
‘80", - 3447, 23447, 2006°, '16°);

INSERT INTO EXPENSE VALUES('9112', '11°, '17-OCT-86',© 0,
' | S (U 7, 0, 0

INSERT INTO EXPENSE VALUES('9112', 12, '17-OCT-86',© 0,
0, 0,’ 0, ‘§725°, "929°);

INSERT INTO EXPENSE VALUES('9112’, 28', '17-OCT-86',© 0,
Co, 0, 0, 0, 0):

INSERT INTO EXPENSE VALUES('9112', 30", '17-OCT-86", " 0,

0, 0,” 0, 0, "4522);

INSERT INTO EXPENSE VALUES('9112, "33", '17-OCT-86', 0,
C o, 0, 0, 0, 0

INSERT INTO EXPENSE VALUES('9112’, 39", '17-OCT-86", " 0/,
0, 0.’ o, 0, 0)

INSERT INTO EXPENSE VALUES(9112’, '43’, "17-OCT-86", 0",
0, 0,” 0, 0,

INSERT INTO EXPENSE VALUES( 9112, ‘54", "17-OCT-86’, " 0,
oy o, 0, o, ),

INSERT INTO EXPENSE VALUES('9112’, 68', "17-OCT-86"," 0.
’ 0.’ 0,’ 0, 0, 0

117




POCOYIORIRN

INSERT INTO EXPENSE VALUES('9112°, '91°, '17-OCT-86", © 12,

© 140, 7 500°, 4089°, 0, 0);

INSERT INTO EXPENSE VALUES('9112°, 9%, "17-OCT-86,© 0,

‘56, 0,’ 593, 0, 0);

INSERT INTO EXPENSE VALUES('9112°, '9¢’, '17-OCT-86", ©  0',

B 0,”’ 0, ‘0, '498752"),

INSERT INTO EXPENSE VALUES(9112, '97°, '17-OCT-86","  0’,

© 0, 0, 0, 0, 0

INSERT INTO EXPENSE VALUES('9112°, 98°, '17-OCT-86",° 0/,

0, 0, 0, ‘5235,

INSERT INTO EXPENSE VALUES('9112’, '99°, '17-OCT-86",©  0’,

o, 0, 0, 0, 0);

INSERT INTO EXPENSE VALUES('9113°, '02’, '17-OCT-86",© 0,

S O 0, 0 0, 0,

INSERT INTO EXPENSE VALUES('9113’, '03’, '17-OCT-86",© 0,

C o, 0, 0, 0, 0,

INSERT INTO EXPENSE VALUES('9113’, '04°, '17-OCT-86',© 0,

o, 0, 0, 0, 0):

INSERT INTO EXPENSE VALUES('9113, '11°, '17-OCT-86", " 0,

© 0, 0, 0, 0, 0

INSERT INTO EXPENSE VALUES('9113’, '12°, '17-OCT-86’, © 0/,

0, 0,”’ 0, 0, 07,

INSERT INTO EXPENSE VALUES('9113', 23", '17-OCT-86", © 0,

. 0;" , 0;' ’ 0., '0.' ;0.);

INSERT INTO EXPENSE VALUES('9113’, 28, '17-OCT-86",° 0/,

S O 0, 0, o, o),

INSERT INTO EXPENSE VALUES('9113’, 30", '17-OCT-86", © 0,

C0, 0, 0, 0, 0

INSERT INTO EXPENSE VALUES('9113’, ‘32", '17-OCT-86",© 0,

SO 0. o, 0.0

INSERT INTO EXPENSE VALUES(9113’, 39", '17-OCT-86", " 6,
10, R) W 1007, 0, 0

INSERT INTO EXPENSE VALUES(9113’, '43, '17-OCT-86", " 0,

0, 0.’ 0, 0, 0,
INSERT INTO EXPENSE VALUES('9113, ‘347,

118

"17-OCT-86, - 0,

G e cemaam am aa



mmm-‘ﬂ-‘“—\-‘——‘—.—-—-—._-_ D

0.’ 0’ 0, 0, 0

INSERT INTO EXPENSE VALUES('911%’, "68, "17-OCT-86',

0, 0, 0, 0, 0,

INSERT INTO EXPENSE VALUES(9113’, 91, "17-OCT-86',

5007, 400°, © 14026, 0, "0

INSERT INTO EXPENSE VALUES('9113’, 92", '17-OCT-86",

2000, - 1599°, 43000°, 0, "-594°);

INSERT INTO EXPENSE VALUES('9113’, '93°, '17-OCT-86', *

800", - 2383, 10000°, 0, 0);

INSERT INTO EXPENSE VALUES(9113’, '96’, '17-OCT-86", °

0‘ (] ’ 0.0 ' 0" ‘0" 10’);

INSERT INTO EXPENSE VALUES('9113, 99, '17-OCT-86’, °

0, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9114', 04", ’
S O 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9114, '12,°
0, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9114", 28", -
Cg o, 0, 0, ),
INSERT INTO EXPENSE VALUES('9114', "30°, °
Coo, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9114", 32, °
S 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9114, "33, "
N 0, o 0, 0):
INSERT INTO EXPENSE VALUES('9114’, "33, "
0, 0, 0, 0, 0%,
INSERT INTO EXPENSE VALUES('9114", '54’, "
0, 0, 0, 07, 0,
INSERT INTO EXPENSE VALUES(9114’, ‘68", -
0, 0, 0, 0, 0

17-OCT-86', °

17-OCT-86', °

17-OCT-86', °

17-0CT-86', °

17-OCT-86’, °

17-0OCT-86",

17-0CT-86’,

17-OCT-86’, *

17-0CT-86',

NN M S R RN

INSERT INTO EXPENSE VALUES('9114°, ‘94", "'17-OCT-86,

0, 0,’ 0, ‘07, '4968°),

INSERT INTO EXPENSE VALUES('9114", 95, '17-OCT-86",

0, 0.’ 0, 07, 246°),

119

67,

53r,




INSERT INTO EXPENSE VALUES('9114’, 98,

0' , ’ 0" . 05' :O;' lol);

INSERT INTO EXPENSE VALUES(9115°, 02",

0, 0, 0, 0, 0,

INSERT INTO EXPENSE VALUES('9115°, 03,

o, 00,0, 0

INSERT INTO EXPENSE VALUES('9115’, 04",

o, 0,” 0, 0, 0

INSERT INTO EXPENSE VALUES(9115’, ‘11,

0, 0, 0, 0, 0);

INSERT INTO EXPENSE VALUES(9115°, “12,

OI , ’ 0', r 0', JOI' 'ol);

INSERT INTO EXPENSE VALUES('9115°, "28’,

0,’ 0, " 0, 07, 0);

INSERT INTO EXPENSE VALUES('9115°, '30°,

0, 0, 0, 0, 0),

INSERT INTO EXPENSE VALUES('9115°, 32,

0," (U 0, 0, 0

INSERT INTO EXPENSE VALUES('9115’, "33,

0, 0,’ 0, 0, 0

INSERT INTO EXPENSE VALUES('9115’, "39°,

0, 0’ 0, 0, 0

INSERT INTO EXPENSE VALUES('9115°, 43,

0,” 0, 0, 0, 0y

INSERT INTO EXPENSE VALUES('9115’, '54,,

0, 0, 0, 0, 07,

INSERT INTO EXPENSE VALUES('9115°, '68’,

’ 0‘ , , 0', ’ 0:, .0,‘ -0-);

INSERT INTO EXPENSE VALUES('9115’, 91",

103", 0, 2205, 0, 0),

INSERT INTO EXPENSE VALUES('9115’, '93,

90", -’ 50, ° 703", 0, 0),

INSERT INTO EXPENSE VALUES('9116’, 02,

) 0, 0, 0, 0y

120

e o att o avh Eod oo il oAt a2 ar o th o e dnd ath dnl o ath aXl o

‘17-OCT-86', °

17-OCT-86’, *

17-0CT-8¢6', °

17-OCT-86',

"17-0CT-86', °

17-OCT-8¢6",

17-0CT-86', °

17-OCT-86’, *

17-OCT-86’, -

17-OCT-86’, *

17-OCT-86’, °

17-OCT-86', °

17-OCT-86', °

17-OCT-86', *

17-OCT-86', °

17-0CT-86', °

17-0OCT-86, °

AL IR AN S WA T L R S TS T RN AT TR TR AR

[ _JW S SRS g % L MWV g




BUNGN _ HFyNFFETUY B8 N &6 8T my

INSERT INTO EXPENSE VALUES('9116’, ‘03", "17-OCT-86", © 0,

C, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9116’, 04, '17-OCT-86",© 4,
. © 60, 24, 900, 0, 0);
INSERT INTO EXPENSE VALUES('9116’, ‘11", '17-OCT-86",© 0,
A o 0 o,
INSERT INTO EXPENSE VALUES(9116', ‘12', '17-OCT-86,© 0,
Sy o o Y
INSERT INTO EXPENSE VALUES('9116', ‘28", '17-OCT-8¢",© 0,
b ’ 0, , ) 0,, ’ 0;, ,0,’ ;0:);
INSERT INTO EXPENSE VALUES('9116', ‘30", '17-OCT-86',© 0,
Coo, 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9116', 32/, ‘17-OCT-86,© 0,
3 A o o o, ) |
INSERT INTO EXPENSE VALUES(9116', ‘33", '17-OCT-86,© O,
Coo, 0, 0, 0, 0);
, INSERT INTO EXPENSE VALUES('9116', 39', '17-OCT-86",© 0,
f o, 0, 0, 0, 0);
3 INSERT INTO EXPENSE VALUES('9116’, ‘43, '17-OCT-86",© 0",
i S o o 0. 0
_ INSERT INTO EXPENSE VALUES('9116’, ‘54, '17-OCT-86",© 0",
y Co, 0, 0, 0, 0);
: INSERT INTO EXPENSE VALUES('9116', ‘68", '17-OCT-86". © 0",
Co, 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES(9116', 91', '17-OCT-86",© 5,
70", ° 93," 1400, 0, 0);
‘ INSERT INTO EXPENSE VALUES('9116’, ‘93", '17-OCT-86",© 100",
i ©ong 473,"  11000', 0, 0
INSERT INTO EXPENSE VALUES('9117', 02, '17-OCT-86",© 0,
Coo, 0, 0, 0, 0
' INSERT INTO EXPENSE VALUES(9117,, ‘03, '17-OCT-86'," 0/,
o, 0, 0, 0, "0
INSERT INTO EXPENSE VALUES(9117, '04', '17-0CT-86",© 0,
Lo o - o o 0
INSERT INTO EXPENSE VALUES(9117, ‘11, '17-0CT-86", " 0,
121

L]
E;o.»e-.mm tRT ATt A C T S N Ny, (0 A Y DAty Dy 6



P UM IR U LU UY UYL AU LW UV L LN

0, 0, 0, ‘07, 0,
INSERT INTO EXPENSE VALUES(9117', “12°, '17-OCT-86', *
0, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9117°, 23", '17-OCT-86',
S 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9117°, 28’, "17-OCT-86', °
S 0, 0, 0, 0,
INSERT INTO EXPENSE VALUES('9117, "30°, "17-OCT-86',
0, 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9117°, °32’, '17-OCT-86, *
Co, 0, 0, 0, 0°);
INSERT INTO EXPENSE VALUES('9117, *33’, "17-OCT-86',
oo, 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9117°, '39°, "17-OCT-86', °
0, 0, 0, 0, 0
INSERT INTO EXPENSE VALUES('9117°, 43’, "17-OCT-86’,
S o, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9117", 54", '17-OCT-86",
0, 0, 0, 0, 07,
INSERT INTO EXPENSE VALUES(9117, '68’, "17-OCT-8¢’,
’ 0, 0, 0, ‘0, 0%,
INSERT INTO EXPENSE VALUES('9117°, ‘91", "17-OCT-86’, °
©200, 78, " 38007, 0, 0),
INSERT INTO EXPENSE VALUES(9117, 93, "'17-OCT-86’,© 61,
1200°,° 1907, 16000°, 0, 0%
INSERT INTO EXPENSE VALUES('9117°, 95, '17-OCT-86', 0,
0, 0, 0, 07, ‘0,
INSERT INTO EXPENSE VALUES('9117’, '96’, '17-OCT-86’,
0, 0, 0, 07, 0

INSERT INTO EXPENSE VALUES('9117", 97", "17-OCT-86',
-0, 0, 0, 96547, 0,

INSERT INTO EXPENSE VALUES('9117°, '99°, '17-OCT-86',
‘ o, 0, 0, 0, 07

INSERT INTO EXPENSE VALUES('9118’, 02, '17-OCT-86",
’ 0, 0, 0, 0,

122

-

!

P ~ - L » R X R - - T L LGS TP T T TR S SR Ay
'I.‘l."l “c ‘.l . ‘ 'llnl'o ‘o.‘-a V. l.' A .. A LA M A v, <> W ‘.} ' - *" ** } v- b




THE Tl T TR TS TSR Tk T8 TR TRER Fhem e & & 7 70 7

INSERT INTO EXPENSE VALUES(9112', 02, '31-OCT-86", " 0/,

0, 0, 0, 0, 07
INSERT INTO EXPENSE VALUES(9112’, '03’, '31-OCT-86¢’,© 0,
-0, 0’ 0, 0, 0),
INSERT INTO EXPENSE VALUES('9112, 04", '31-OCT-86", © 181,
0, 4711, 07, 20067, ‘16°);
INSERT INTO EXPENSE VALUES('9112’, '11°, '31-OCT-86"," 6,
0, 75, 0, 0, 0
INSERT INTO EXPENSE VALUES('9t12’, '12°, '31-OCT-86',© 0,
0, 0, 0, ‘6280°, '929°),
INSERT INTO EXPENSE VALUES('9112°, 28, "31-OCT-86"," 0/,
0, 0, 0, 0, 0)
INSERT INTO EXPENSE VALUES('9112, '30°, '31-OCT-86°, " 0,
0 o, 0, 07, 59507,
INSERT INTO EXPENSE VALUES('9112’, 33, '31-OCT-86",© 0,
C o 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9112°, 43", '31-OCT-86",© 0,
Cy 0, 0, 0,0
INSERT INTO EXPENSE VALUES('9119°, '43’, '31-0CT-8¢’,© 0,
0, 0, 0, 0, 0),
INSERT INTO EXPENSE VALUES('9119°, *54°, '31-OCT-86',© 0,
o, 0, 0, 0, 0);
INSERT INTO EXPENSE VALUES('9119, '68, '31-0CT-86",© 0,
o o, 0, 0, 0
COMMIT;

CREATE I'NDEX ECF ON EXPENSE(COST_FUN_NO);

CREATE INDEX ECC ON EXPENSE(COST_CL_NO),

UPDATE EXPENSE SET LABOR = LABOR / 1000, MATERIAL = MATERIAL
/ 1000,

OTHER = OTHER ; 1000;

GRANT SELECT ON EXPENSE TO PUBLIC;

EXIT

123




APPENDIX B
COST CENTER ANALYSIS USER MANUAL (MINICOMPUTER)

1. INTRODUCTION

This system is designed to allow Cost Center managers the ability to track
expenses and compare them to budgeted amounts. In that way users can gain greater
insight into costs and the reasons behind them. This ability should give managers a
much clearer appreciation of where and how costs are being produced.

Graphic display of some of the numerical output is provided using TEL-A-
GRAF business graphic system.

2. REQUIREMENTS

Cost Center Analysis (minicomputer) is designed for a Prime 9755 computer with
on-line capabilities. The software is written in CPL, Prime’s Command Processor
Language, and the TEL-A-GRAF command language. The software requirements are
the CCA (minicomputer) program, TEL-A-GRAF, and the PRIMOS operating system.

3. STARTING THE SYSTEM

At the PRIMOS command prompt (OK, or ER,) type <R CCA> (do not type
the less than (<) or greater than (>) symbols) to activate the Cost Center Analysis
program. The "R” stands for RESUME. RESUME allows the user to interactively
run a CPL program. The operating system then looks for a “compiled and loaded
program.” If it does not find the file, it will then look for the appropriate CPL file.
The CPL interpreter will then act on the program CCA.CPL and issue the appropnate
instructions to PRIMOS [Ref. 14: p. 1- [-2].

The program’s top level menu should then display. If it does not, check to see
that you are at the PRIMOS command prompt. If so, follow the above steps to load
CCA. Ensure you type the “"R” before CCA.

4. MAIN MENU
With this version you are allowed two options (see Figure B.1). In future
versions more options may be added.

At the “Select One:” prompt vou may respond with “T" or "Q" to identifv vour
desired option (see figure B.1). The system will validate vour response, so the select

124

e 02 W el e o AR




. AL ] Y ‘, . -,v...-.'.' ., .
E@C‘i‘%‘?ﬁﬁiﬁ%ﬁ&;h;:';'.':-:.‘;:tl‘t"'ﬂ"f'.‘x AN NSO TR SERFNIIN

5- TEL-A-GRAF GRAPHICS DISPLAY
- QUIT

Select One:

Figure B.1 CCA Top Level Menu.

prompt will reappear if anything other than “T" or "Q” are entered. If vou enter "Q”
you will leave CCA and be returned to the PRIMOS level at the command prompt
(OK,). Option “T" will select the TEL-A-GRAF option, allowing you to produce
various graphs from standard formatting files. CCA.

After the system validates vour response (T), you will be asked if you wish to go
directly to TEL-A-GRAF (see Figure B.2).

This gives you the option of entering TEL-A-GRAF immediately, without
selecting one of the standard graphs that are provided the user through CCA. Entenng
TEL-A-GRAF at this level requires you to know the command language, and how to
format your data and include files. The include files contain the programs which TEL-
A-GRAF uses to produce the graphs. The data files contain the formatted data. The
novice or occasional user is cautioned to use the graphic formats provided by CCA.
The structure of the data and include files will be dealt with in more Jetail below.

[f you do not wish to go directly to TEL-A-GRAF, select "N* or "NO". This
query will only accept a yes or no response.

........ et et . .

NI I IO ST PPPT IR PV P S AP Pe-oe s

- Ce e v,
PO ST I P VS 1




b - ——— TN VRN TNEN TEER TNER TR TR TR TR TN W TR W N R

B-TQ%‘ -GRAF GRAPHICS DISPLAY

Select One: T
Go directly to TEL-A-GRAF?

Figure B.2 Prompt tor the user's response.

S. CHOOSE COST CENTER MENU

This menu allows the user to select the particular Cost Center he wishes to
investigate (see figure B.3). In this version only one Cost Center is provided. Future
versions could easily incorporate more.

At the “Select One:” prompt enter "1." This is the only response that CCA will
validate. An inappropnate response will cause the prompt to reappear.

6. GRAPH PLOT CODE MENU

This menu allows the user to select the type of standard graph he desires . see
figure B.4).

Option "A” gives the user the opportunity to produce a plot of budget to
expenses. Within the plot a bar chart of the budget data is overlaved. This :raph
provides the capability to studyv expense 1o budget vanances, and 0 gquickly :denutv
how closely to budget the Cost Center is tracking.

Option"B” produces a bar chart of the expense to budget data. [t displavs rhat
information in “time elapsed.” This allows the user to identify variances and also the
budget amount that should be expensed at the particular data date.

126

NS R A TN T TR LR SESRR DY

“p naw " LIPL I LI I I e " “u T I S P Y
Emud.xd.:&xm.-wf&.- et A A A N e e e e AN A A N e,




]

CHOOSE COST CENTER

1-9110

E Select One:

Figure B.3 Prompt !or the user s response.

Option "C” develops a composite of four variance graphs: Percent Expended,
Data Normalized on Percent Elapsed Time, Variance in Dollars, and Percent Vanance.
These bar charts show whether the particular expenses accrued have positive or
negative vaniances and their magnmtudes.

7. PLOT OPTIONS MENU

This menu allows the user to further define the particular graph selected (see
figure B.5).

Option "A” causes the graph produced to display the total budget and expenses
of the Cost Center selected. Bar Graphs will be broken down by Cost Functions
within the Cost Center.

Options “2" through "9” will provide the data by parucular Cost Function. On
the bar graphs the Cost Functions will be broken down by Cost Classes.

All expense data is of the most current date entered into the updated data files.

12




W---- L el o

PLOT CODE:

A P RCHART OF BLDBEL OVERLAYED ON THE PLOT

B- BARC_H:&R'_F BY COST FUNCTION OF EXPENSE TO
BUDGE

C - COMPOSITE GRAPH OF

Select One:

Figure B.4 Plot Code Selections.

8. ENTER TEL-A-GRAF

At this point CCA will open TEL-A-GRAF and issue the approprniate commands
to produce the Jesired graph. The commands will scroll by on the screen and then you
will get a blank screen. In a few seconds the selected graph will be drawn on the
screen. After it is complete you may study the graph. To continue strike the
<ENTER> or <RETURN> kev. You will be returned to the command language
level of TEL-A-GRAF. You mav continue working at this level, if vou know the
appropnate commands. To return to CCA, type <QUIT.>. You will then receive
the prompt in figure B.6 Tvping “N" or "\NO” will allow you to produce another graph
through CCA. Tyvping “Y" or "YES” will return you to the PRIMOS command
prompt.

128

., »
AN LR AN




TR TOTEN T T ETT W T W T e s s T ey e e, o

PLOT OPTIONS:

TG0 N U Latadt I
[N DR DY TR Y B N |

Select One: |

_““*__ﬂ

Figure B.5 Plot Option Selections.

Finished?

Figure B.6 Completion Querv.

9. USING TEL-A-GRAF
TEL-A-GRAF is a very powerful graphics svstem. With this power comes many
options and different ways of accomplishing the same tasks. We shall discuss only a

129

IABALALACAG AN AL LS vt oY I ey e



WAL N

few of them here. The TEL-A-GRAF User Manual [Ref. 12), will answer most
questions you may have if vou want to become more famuliar with TEL-A-GRAF
a. Making Your Owa Data Files

Many methods exist for entering data for a graph. We shall talk of onlv two
methods. The first is creating the data tile from the editor, and the second is :nputing
the data while in TEL-A-GRAF. Ail data must be inputed in nuilions ot Joilars ;or 1
Cost Center. For example, live hundred thousand Joilars, $300,000.00 is represented
as .5 and one mullion dollars, S1,000,000.00, 1s represented as !|.0. When data 1s
inputed for a Cost Function, by Cost Class, it must be in thousands of Jollars.
Vanance data is in Dollars or decimal representation for percentages.

A323d4 3435018 4 0.053063 30.27d093 6 1.48263 T .-
)

s
24
—
iy
)

3223337754 4004139 3021379 6 115648 T ..

034 3 331009 d 0.04487 50.21733 6 110264 7 ..

Figure B.7 TEL-A-GRAF Data File for Tripie Bar Chart.

1. Creating a Data File From the Editor.

Creaung data files from the editor offers several advantages 1o entening “he
data interactively with TEL-A-GRAF. [iret. By entening he data n -ne zaiter moge.
you can check the data for errors that may have occurred when entering the dJata.
Secondly, if several different sets of data are to be graphed prepositioning the Jdata :n
files will shorten the amount of time vou will need to be at the graphics termunal
Lastly, if the data will be used later, vou “\iii not have o input it 1guin,

This 1s not a tutonal on how o use tne editor. For intormauon on ne

editors available and how to use them see the Prime Computer Tramming Manual
[Ref. 15]

30

. [ RS S TS TSI I D -_--_-_-." -'\.‘_'.".4_--..-_- A B : L e L PN T AT S




W‘mmwmmmm'-u- M aaibbadi b

Figure B.7 is an example of a typical data file. This particular data was
used with the Triple Bar chart. However, the format is the same for all graphs. The
first line must be INPUT DATA. The period at the end of the line is very important
so do not forget it. The next line should be the name of the data. This name will
appear in any legend that vou mav want to produce. \ext comes the actual data. The
data must be in X, Y pairs, the independent followed by the dependent. The comma
between the Xx.v 1s optional, a space will do. The data may also be written in column
form which makes changes and error checking much easier. In the include files we
shall discuss, all dependent values are O at the origin, followed by 1, 2, 3, 4, etc. The
label for each however, i1s not 1, 2, .3 etc. The labels have been given other names such
as the Cost Functions 9112, 9113, etc. The corresponding position is the number that
must be in the Jata tile, not the label.

If more than one set of Jdata 1s 1o be graphed on that graph, the remaining
data can be entered in the same way. When all data is entered, the last statement must
be END OF DATA. The !ast statement shown in figure B.7 is the end of file symbol
for TEL-A-GRAF. This is optional tor the user to put in because TEL-A-GRAF will
automaticailv write :t in the lile after 1t is Jone.

Without the data base implemented vou may think that this svstem 1s
useiess. You can, however, enter vour own data into the appropriate file to use one of
the graphs shown. Figure B.3 shows which data goes with which graphs. By entering
the updated information in the appropnate data file in the appropriate format, the
CCA menu system can be used with no knowledge of TEL-A-GRAF. Only knowing

20w t0 Julid 1 Jata ‘iie .s -equired.

Duaia Fiie (rrapn ,
110 Budget Bar Graph 'n corner of composite graph
Elio Dtst Rar g postic grap
‘ 110 lot of budget vs expenses ,
‘ 110 erceg; Expended Bar Graph for vanance analvsis
\BI110 ata \ormalized on Precent Elapsed Time
VBL1O anance .n Doilars
PV1l0 Percent Vanance
- -
-
Figure B.8 Name ot Data Files Matched With the Appropriate Graphs. '_:j
X
N
LY
131 N
"
-*Jd
R,
e

lﬁ ’

L&(&'A’. N A P N NN ONS



—~ -

-

The name of the data file consists of two parts, letters followed by

numbers. The letters may represent on of two things. In the composite graph, the bar
graph of the budget is linked with the data file B110. No matter which Cost Function
you select for the plot in the menu, the budget for the Cost Center broken down by
Cost Function is displayed in the corner. All other graphs are linked as shown is figure
B.8 . When graphing a Cost Function instead of the cost center, the data file’s
numbers are the Cost Function number, with the exception of the bl110 series, which
always references b110. For example, the data file linked to the trniple bar graph for
Cost Function 9112 is BBE112, for Cost Function 9113 is BBE113, and so on. This
convention holds for all classes of data file names.

2. Entering Data From Within TEL-A-GRAF

This process is more complicated than using the editor, and has a greater
potenual for eirors getting by. A knowledge of TEL-A-GRAF is necessary in order to
use this method. Either vour own commands must be issued or, the files already
created can be included. Data is entered the same way as it is in figure B.7 . and as
explained in the previous section.

Since a knowledge of TEL-A-GRAF is necessary, this procedure assumes a
more sophisticated user. Modifving the existing graphs to suit vour own needs and
using different data may be a useful technique for learning TEL-A-GRAF.

b. TEL-A-GRAF Commands

This section is designed to show vou how to manipulate existing files that
TEL-A-GRAF uses. It is not designed to show you how to write original TEL-A-
GRAF programs. Figure B.9 list the names of the programs and their relation with
other modules.

The main module for each graph contains the commands to generate a graph
from Cost Center 9110. The related graphs modify this basic graph to get the
appropriate labels and titles.

1. Using Existing Files

Existing files are brought in to TEL-A-GRAF through the use of the
INCLUDE command. The include command brings in a file which is then processed.
[f more than one file is brought in, the first is processed, and changes or additions to
that file are made when the next include file is processed.

An example of a possible command level interaction follows. Suppose vou
have created a data file named BBEI12" tor a triple bar graph of Cost Function 9112




TaT WA T T ar

Graph Module Relared Modules

Bar graph of Budge Bl none
Plotof Buget vsExpense  EX2 EX112, EX113, EX114, EX115
riple bar gra 2, , . ,
ple bar grap Blié Bl17 Bils B119
Percent Ex&)ended PERBAR none
Normalize Time NORBAR none
Variance in Dollars VARBAR none
Percent Variance PERVAR none

Figure B.9 Graphic Program Module Relations.

broken down by Cost Class. The data file must contain a value for each authorized
Cost Class, whether it has been used of not.

The first prompt from TEL-A-GRAF is SPECIFY FILES.< RETURN >
is the appropriate response. Next you need to specify the data file. Next vou must
include the first include file. This is the main module for the graph. For this example
it is '‘B4’. Next you must specify the second include file to set the appropriate headings
and labels. In this example that file is B112. Figure B.10 demonstrates the proper
sequence for this example.

SPECIFY FILES: < RETURN > !
GENERATE LEVEL.ENTER: |
< DATAFILE IS ‘BBE112". > |
GENERATE LEVEL..ENTER: |
< INCLUDE 'B4'. > ;
INCLUDE FILE BEING PROCESSED ‘
ENTER MORE OR PERIOD: ‘
< INCLUDE 'B112".> |
ENTER MORE OR PERIOD:

< GO. > (

Figure B.10 Interactive Session with TEL-A-GRAF.

133

A A e T o T




2. Appending Existing Files

If you went through the process of figure B.9 , but you were not satisfied,
you can make changes from inside TEL-A-GRAF. First vou must type
"CONTINUE.” This allows you to continue with the same graph. Now you can
change the data, the title, or anything else you wish. You can chang: the data file
either by specifving another data file as before, or by inputing the data by hand as
described in the data section. Changes in the title can be made by issuing commands
such as “TITLE 1S '‘BUDGET VS EXPENSES FOR COST FUNCTION 9112." This
will change the title to whatever you write.

For the user who wants to use TEL-A-GRAF at this level, further
information is available in the user manual [Ref. 12].




APPENDIX C
COST CENTER ANALYSIS USER MANUAL (MICROCOMPUTER)

1. INTRODUCTION

This svstem is designed to allow Cost Center managers the ability to track
expenses and compare them to budgeted amounts. Additionally, the user can idenufy
the jobs that have accrued these expenses. In that way users can gain greater insight
into those costs and the reasons behind them. This ability should give managers a
much clearer appreciation of where and how costs are being produced.

In addition to the query screen responses, the user can receive hardcopy
responses. Graphical display of some of the numerical output is also provided using
the systems graphic utilities.

2.  REQUIREMENTS

Cost Center Analysis hardware requirements are an IBM PC/XT/AT with at
least 640K and a hard disk. A printer is optional for the output print options. The
software requirements are the Oracle Data Base Management System (DBMS),
PC,MS-DOS, and the Cost Center Analysis and Graphic Utilities programs, all
installed on the hard disk. In order to support CCA and the graphics utilities the
following utilities are required as well:

The CUL library from Essential Software Incorporated.*

GraphiC from Scientific Endeavours.”

3. STARTING THE SYSTEM

The first step to begin the CCA program is to turn the computer on. This is
done by turning the switch on the power board. At the DOS command line type
“Oracle” to activate the Oracle DBMS. This system is essential to the operation of
Cost Center Analysis. Version 1.0 will not call Oracle first, due to the memory
requirements. It is hoped in later versions that this service will be provided for the
user.

3C Utilities Library User Guide (¥ersion 2.0y ESI, Maplewood, NJ 07040, 1985.

SRome._James A._and George_ (5. _Keilev., GraphiC Version 2.1, Scientific
Endeavours, Rte. 4, Box 79, Kingston. TN 37763, 19835,

3

taa

|




Once Oracle has displayed its logo and licensing information, type “CCA” to load

the Cost Center Analysis system. This places the user at the main menu.

4. MAIN MENU

COST CENTER ANALYSIS
1. Cost Center Information
2. Cost Center Information Usin

QOracle Command Language (SQL) for Ad hoc
Queries, Inserts, Deletés and Updates

Selection:
A blank line exits to DOS

Figure C.1 Cost Center Analysis Main Menu.

At this point vou are provided two options (see Figure C.1). If you select option
“1,” vou will be provided menus with preformatted queries. Using these menus
simplifies the task of accessing Oracle.

At times the menus may be too limiting or not ask the right questions; therefore,
option "2” allows vou to use Oracle more directly through the Oracle User Friendly
Interface (UFI). To use the UFI, vou need to understand the Oracle command
language to some degree. In the last section of this appendix we show examples of
how to use the command language to develop your own ad hoc queries, make
insertions. deletions or drop tables.

Alfter exiting option “2,” you will be returned to the A> prompt of DOS. If you
wish to reenter the system, it is not necessary to rerun Oracle. You will have to re-
enter "CCA" to return to the top menu of the Cost Center Analysis svstem.

In all menus, when entering options the system will not accept an inappropriate
response. Inappropriate values will cycle the user back to the menu he just tried to
query from. The svstem also requires you to verify your responses. If you wish to

change your answer, enter “\”, or “n” to the question “Is this correct?”. The system

will blank your response and vou can enter vour change.

. ————— . . R A P SR




A blank line or a 0 will allow you to exit the present menu and return to the
menu directly "above” it.

Note: General instructions for menus will not be repeated under each
explanation unless they differ from the norm.

5. INFORMATION AVAILABLE'

INFORMATION AVAILABLE
1. Budget VS Expenses
2. Job Order Information

Selection:
A blank line exits

Figure C.2 Information Available Menu.

This menu (see Figure C.2) identifies the classes of information that are available
to you.

Option “1” will introduce you to the numerical and computational information
available. This is the budget and expense information provided in various formats and
aggregations.

Option “2“ directly addresses the Job Order information. [t will show job orders
to budget and cost information.

6. BUDGET VS EXPENSES

This menu allows the user to analyze budget vs expenses under various
aggregations (see Figure C.3).

Option "1” provides the user with Total Budget vs Expenses information by Cost
Function, Cost Class, Cost Function and Cost Class, or Cost Center.

Option “2” allows the user to closely compare budgeted figures to actual expense
figures by either Labor, Material or Other.

137

WJWUTUEY U ww

[}

¥,
g
A
&K
N
I":
DN'
™
X

.’.’.‘.' '-‘-'-'

PRI

e e Attt




BUDGET VS EXPENSES

1. Total Budget VS Expenses to Date
2. Labor or Material or Other

3. Budget by Cost Func,Cost Class

Selection:
A blank line exits

Figure C.3 Budget vs Expenses Menu.

Option "3 gives the user the budget by Cost Function and Cost Class as it
would appear on the SBR-22A summary report:
1. A title will appear after you input vour selection. Press any key to continue.

2. Select your desired response to the print o,gtion prompt. Note: the svstem will
not echo vour response, so be patient if it appears to take a little while. The

-

computer must handshake with the printer and this takes a little time.
3. After the screen displavs, fpra:ssi,r:& a key will disFlay the next screen. Pressing a
will abort the resf of the information display for that Zost Function and
start the first page of the next cost function’s budget.

4. After each Cost Function’s budget is displayed vou will be asked if vou want
printed output for the next screen.

5. After the last Cost Function output, you wiil be returned to the Budget vs
Expenses menu.

7. TOTAL BUDGET VS EXPENSES

The first option gives you the total budget vs expenses by Cost Function (see
Figure C.4). It allows you to produce a data file for the graphics utilities by answering
yes to the graphics output question.

The second option gives you the Total Budget vs Expense by Cost Class. [t also
can produce the data file for the graphics utility.

The third option provides you the total budget vs expenses information by Cost
Function and Cost Class.

The last option outputs the Total Budget vs Expenses by Cost Center. The
graphics data file is written if the user so selects.

All expense data is of the most current date entered into the data base.

138

VAN,

> 390N ¥ Ny '\-}\; ) \; ‘-;."-' NN NN \:.'\'.\'.\'

L4
(4

e NI

e P2 IR AL AL ARSI I D@



mmmm‘m“ TN TR TS s LT - TN e '-T

TOTAL BUDGET VS EXPENSES
; 1. Cost Function

2. Cost Class

3. Cost Function Cost Class

4. Cost Center

Selection:

A blank line exits

Figure C.4 Total Budget vs Expenses Menu.

CAUTION: Options “1” and “2” write to the same data file. If you select both
to create the graphics file during the same session, vou will not overwrite but append
to the file. The graphics utilities are not designed to accept both types of data in the
same file. [t is best to have one or the other, but not both types in the file. Option "4
writes two data files for the graphics utilities.

8. BUDGET VS EXPENSES (HOUR, LABOR, MATERIAL OR OTHERS)

BUDGET VS EXPENSES
1. HOURS

2. LABOR

3. MATERIAL

4. OTHER

Selection:

A blank line exits

Figure C.5 Budget vs Expenses by Hour, Labor, Material or Other.

139

..........................

L]
> S S P S o
E@.\ﬂhﬁfﬂﬁﬂ&%‘-{\\\ﬂ\im")s‘{\"':s':'-ﬁ.fsﬁ'-ﬁ‘xﬁ‘ﬂﬁx :



UWUWPWY wrYy TV T Ty W s ““I“““"““““““wr‘wwﬂ'w-ﬂ'\r-v'v"““ruv-\--T
" L Lol

This menu provides a further breakdown of budget vs expenses by Hours, Labor,
Matenal or Other (see Figure C.5).

' Option “1” compares budgeted hours to expensed hours by Cost Function Cost
Class.

Option “2” compares budgeted labor to expensed labor by Cost Function Cost
) Class.

Option “3° compares budgeted to expensed material by Cost Function Cost
Class.

Option “4” compares budgeted to expensed other by Cost Function, Cost Class.

9. JOB ORDER INFORMATION MENU

| JOB ORDER INFORMATION
1. Input Cost Function # Find Job Orders
2. Input Cost Class # Find Job Orders

E =4 e

E 0l 2n an gk 2B 3

Selection:
A blank line exits

X e

Figure C.6 Job Order Information Menu.

This menu allows the user to select submenus which will list job order numbers
associated with a particular Cost Function. Cost Class (see Figure C.6).

Option "1” outputs job orders of the selected Ccst Function number. See the
Cost Function Input Menu (Figure C.7)

FrvyrTEOw

Option “2” outputs job orders of the selected Cost Class numbers. See Cost
Class Input Menu (Figure C.3).

-y

10. JOB ORDER NUMBER INPUT MENU
Enter the Cost Function portion first, and press <enter> (see Figure C.9).
Then enter the Cost Class portion of the number; press <enter>. Finally, enter the

e T i 2 g4

140

L a4 a0 ca BB SN gn g

r(rf ..................................... R S T ."'A*-.". -.._‘
mﬂm‘})ﬂ i.f;f.f».f.hf‘y-'ﬂ-t' 'I...l'-‘i-AA A.-L-[A_Kudli-x’JAn. O T SO Y ST JO O PEVE TV WY AT W, ? i e ad




INPUT THE COST FUNCTION NUMBER

Selection:

A blank line exits

Figure C.7 Cost Function Number Input Menu.

INPUT THE COST CLASS NUMBER

Selection:

A blank line exits

Figure C.8 Cost Class Number Input Menu.

Job Order Number and press <enter>. The system will require vou to verifv vour
response. If you wish to make cha~ges, type “N” or “n”, and make the changes by
reentering all the values. Entering 4 blanks will return you to the Job Order
Information Menu.



m““‘wﬂl' TRFOTTTUT U P e VS JOPFW VTP ey N TR TEST RS ¥ AETE & T

PRI STt O Dl i

THE JOB ORDER NUMBER
COST FUNCTION NUMBER
COST CLASS NUMBER

JOB ORDER NUMBER

A blank line exits

Figure C.9 Job Order Number Input Menu.

11. COST FUNCTION INPUT MENU

Enter the entire four digit Cost Function number, or else no records will be
selected by Oracle (see Figure C.7). Press <enter> when the numbers have been
inputed. The system will require you to verify your response. Respond to the printed

' output prompt and then the information of the Cost Function will be displayed. After

the information display, type <enter> to return to the Job Order Information menu.

12. COST CLASS INPUT MENU

Enter the two-digit Cost Class number (see Figure C.8). Press <enter> after
inputting the number. The system will ask vou to verifv the response. Respond to the
“printed output™ prompt and the Job Order numbers for that particular cost class will
be displayed. A blank entry returns you to the Job Order Information menu.

13. GRAPHICS

The graphics portion of this system., due to memory constraints, is accessed
outside of the system through DOS commands. There are four graphs that the user
may view. Each graph is a separate file, so that the user may choose which graph to
display. The following is a short description of each graph and the files they access:

BAR.C is executed from DOS by typing ‘BAR".

VAl T ¢S TR T T R e T T en T

B WY Y

!




BUDGET

FFEE]
;E
(4

10

& ~
9 (¢}
T T

Millions
4

T

37T
+

T, g
;9088 FUN S

j B

Al
11T 11T

HHH BHE HH)
- 1 G aiisal

444 4
144

T
+

e

HifH

Cost Function

2 113 114 115 116 117 118

19

Figure C.10 Single Budget Bar Graph.

This module produces a single bar graph, representing the budget of each Cost Center

(see Figure C.10). File accessed: GRAF

PLOT.C is executed from DOS by typing “PLOT".




M e 2Bk

|
l
| a
, Y 1% |
:’ N’ N ;
| \ 12 |
i A \‘. :f
{ mq—- \‘\ -JBJ
QJ' -
(7] 12
{ C =
3 E
Q. > NS
X N ‘gc
!LLJ \ 4(3
| . W Jz = |
] s =
: \ o
o N 18 -
S -
! 0D} ! ‘z(u.l
ﬂ @ \\ W’ﬁ
_c o
3 N
“4
= \NE
NE
pa 3 3 K 3 3 r ¢ < { C I

SUQPY '

Figure C.11 Plot of Budget and Expenses.

This module produces a line graph. The solid line being the budget, with the broken
line representing the expenses. [t is plotted by month (see Figure C.11). Files
Accessed: GRAF1, BLUD

Tripbar.c is executed from DOS by tvping “TRIPBAR".

144

l:n.mm'.-.'m*.n(&h&.ﬂ.ﬁ.ﬁ‘-ﬂ.‘-ﬁ.‘-’;-3‘-3:-1-'-'.:-}'_-}Z'}Z'}Z'}':L-'.;-I:k" N




WWW'“"“"‘"’ TN VRN T TR ST wee———._,—

117 118 119

Function

116

BUDGET

114
Cost

1

112

5.6 8 L 9 S v T 3
SUOTIN

Figure C.12 Triple Bar Graph.

This module produces a Triple bar graph. The nuddle bar represents the budget for
each cost center, left bar rcpresents the expenses and the right bar represents the
percentage of the budget expended (see Figure C.12). Files Accessed: GRAT

Combo.c is executed from DOS by typing "COMBO".

145

S T TP E PR G TP N PR N
N I N P el D e PN e e P o 8, W



.
i Q.
' 164
i
(@]
1>
-) b
i -
H 4
E v——{ -
4 z
ﬂ 12D
3
’ <
) .
| <
m#—‘
' N 1a C
\ < O
x =
3 L] -(u—
} - EQ
] - -
- 4w ©
~ W C
k : -9 L
| ot o = e
w - 9 1 <
’ O 3 S
:
- ]
m ]
: 8 18
" >
- 40
“ Z
) - —
N R . 4 O
t o8 6 9 ¢ 9 s v £ 2 4+ 0 YA
STOIIN \ i
L e I 4 - ‘
\ SUOIHITIN |
. |
? |

Figure C.13 Plot of Budget and Expenses with Bar Graph Overlayved. 1

v

This is called directly from DOS after the CCA system has been processed. This
module produces a full page line graph, with the solid line representing the budget and -]
the broken line representing the expenses, by the month. Inset in the upper left hand

corner in a single bar graph, reduced in size that plots the budget for each cost center.
Files Accessed: GRAFI, BUD, GRAF

-

e

146

a n s e o

D AN A SN e YOO S I,




memmr-‘__mm’—'—'—-— o R TR S T

If the user is more experienced and plans to use the UFI portion of the system with the
graphics modules, he must know the names of the files that each graphic program
accesses. Please take note of the above information. After the graph has completed
execution, a beep will sound, and the user has a selection of options that he may

choose from. The following is a duplication of a menu that will appear if the user

presses the < space> bar:

| --> large, low resolution plot

L --> large, high resolution plot |

m --> medium sized, high resolution plot
M --> medium sized. high resolution plot
g --> draw grid on screen

q --> quit and close files

z--> zoom ,

w --> zoom with window

1-9 --> ship n pictures

CR --> go on to next plot

Figure C.14 Allowable Modifications of Graphs.

See Figure C.14 for the menu of listed options provided the user. With those options.
the user has the ability to zoom in for more detail as well as modify the graph
" produced.
[f the user wishes to exit the graph and skip the above menu, he will just press
<enter>.
Samples of printed output of all graphs can be tound on the following pages.
[t should be noted that these programs, while short structurally, take
approximately 3 to 4 minutes to complete execution. While the program is displaving

the graph on the screen, line by line, it is creating another, faster executing file. If the

user executes the program BAR.C byv typing "BAR”, a corresponding file named |

BAR.TKF is created. This file is executed by tvping “play BAR.TKF". |
This file is only a replayv of the program BAR.C, and will not contain current

data if the data base system has been accessed again. The advantages of having a

".TKF" file is speed. If the user wishes to review plotted data previously created, or if

the graphic display is being used in a presentation, there is no need to endure the

tedious wait of the main program.

The play option is provided as a utility with the GraphiC graphics library.

[47




mmmmmnmrlu bt Bat Ba - A S _Ba A ol o Rl ahk Al and

14. AD HOC, UPDATES, DELETIONS, MODIFICATIONS WITH ORACLE
a. Introduction
Oracle, through UFI, provides you with many features and procedures.
Information can be extracted and displayed in many different ways. The menu driven
portion of this svstem allows vou easy access to some of the information provided
through this system. However, all queries could not be anticipated and some people
preter to use the command language instead of the menus. For these people we have
provided the option of using UFI to interface with Oracle. The UFI interface can also
be used to update the data base, delete rows, change attributes and even format
reports. We will give you a brief description to get you started. For further
information and for more advanced techniques, see the Oracle User Manual Vol. |
[Ref. 16] that comes with the Oracle data base.
b. Getting in and out
The first thing vou must know is how to get in and out of UFI. You must be
in the same dJirectory as the execute file CCA.EXE. Then make sure you run Oracle
before running CCA. Type Oracle at the DOS command prompt as shown:
D>ORACLE
Then tvpe CCA at the prompt.
D>CCA
When the first menu appears choose 2. If all goes well the next prompt
should look like this:
UFi>
You now should be in LUFI. The authorized userid and password were
automatically issued in the call to UFI. When you are done and wish to exit type
EXIT at the UF1 prompt.
UFI> EXIT
This will return you to the first menu again where you can reenter UFI, use
the menu driven queries, or exit to DOS.
c. Ad Hoc Queries
Once vou are in UFI and have the UFI prompt, vou are ready to begin. First
vou must know the name of the tables you are dealing with, have an idea of the
information stored in each, and the relationships between tables. All this information
1s contained in the data dictionary (Appendix A). In summary, the following are the
names of the tables associated with CCA:
{. EXPENSE

148

"o L "w W "'v\.-'-h-'\_-'_n.-..-.._. .._-..'_.....__
Lﬁf.i‘u'tMﬁ(‘-:\’En.ﬁf\’ AL PPN PN L S N



L]
WEGERERIR R ~ RO . L T T e, . _ ;. "
E‘l- '-‘\'.:%\J\J ..b..‘\n" A PRSI ANY .P:'J?J'_AJ' )’ AP _1- .‘- .-_MM ----- P S ST S PN

T & -

2. BUDGET
The simplest query to make will give you all the information in a particular

table. To display this information at the prompt type:

UFI>SELECT * FROM BUDGET,; This means select all the columns
from the table BUDGET. It will display all the information contained in the table. Be
sure to end each query with a semicolon.

Perhaps you do not want all the information in the table but only specific
columns. To display this information type at the prompt:

UFI>SELECT COST_FUN_NO, COST_CL_NO, STLABOR, FROM
BUDGET;

This will display three columns from the table BUDGET, namely Cost
Function number, Cost Class number, and Straight Time Labor for all rows in the
table. Notice the commas between the column names. There is no comma between
the last column name and the key word FROM. Once again the statement is ended
with a semicolon.

If you do no want all the rows but only specific rows, vou can limit which
ones vou get like this:

UFI>SELECT * FROM EXPENSE WHERE COST_FUN_NO = 9112

This will display all the information for every record in the EXPENSE table for cost
function 9112. The word of number must be exactly as it is in the data base, including
capital letters. In UFI, if you forget exactly how the data was entered. Oracle cannot
find a match. Again notice the semicolon at the end of the query.
The next step is to combine what we have learned to derive even more specific

information. Here is an example:

LFI>SELECT COST_FUN_NO, COST_CL_NO, STLABOR FROM

EXPENSE - - -
2 WHERE COST_FUN_NO = 9118
3 AND COST_CL_NO = 54,

There are several things to notice on this query. First, it takes more than one line.
UFI automatically enters the numbers for each line. Commas are placed only between

149

- PR - e LT e e
<, LT T O I L N . .

Aol

- W




S

column names, but not between STLABOR and the key word FROM. The key word
AND must separate the predicates after the where statement. The values that vou are

looking for must be in the same format as the data is stored, first letter capitalized and
the remaining in lower case. The entire query finally must be ended with a semicolon.

Now you can go and look for specific information from a single table. But
what if you want information that is contained in two different tables? Do vou have to
write two different queries comparing the first to the second to find the information
you are seeking? No, because this would be the end of this tutorial.

d. Joins

Combining tables is known as a join. To join tables they must have a
common aitribute (column). The name can be different but the values must be stored
the same way.

Let’s look at an example. Suppose vou want to look at budget compared to
expenses for a particular date that is in the data base. You want to join BUDGET and
EXPENSE. They have two common attributes COST_FUN_NO and COST_CL_NO
on which they can be joined. Lets look at this Oracle statement.

UFI>SELECT | BUDGET.STHOURS, BUDGET.STLABOR,
EXPENSE.STHOURS,

2 EXPENSE.STLABOR FROM BUDGET, EXPENSE

3 WHERE BUDGET.COST_FUN_NO = EXPENSE.COST_FUN_XNO
4 AND BUDGET.COST_CL_NO = EXPENSE.COST_CL_NO

5 AND DT = "31-0OCT-86";

E
S

This will display Straight Time Hours and Straight Time Labor costs for BUDGET and
EXPENSE values where the date DT is 31 OCT 86. Notice the attributes that are
joined on, COST_FUN_NO and COST_CL_NO are both explicitly stated in the join.
The name of the table before the name of the attribute needs to be there only if the
names in the tables are the same. Thus the attribute DT in EXPEXNSE does not have
to be written as EXPENSE.DT because there is no DT in the BUDGET table:
however, it could be if you prefer for the sake of clanty.
e. Mathematical Manipulations

The next topic in Ad Hoc Queries is how to add, subtract, multiply, divide,

find the maximum and minimum numbers. We will look at addition. The Other

operators work in the same manner.

AN, L

4 2 M WE w B R NS

A AT AT AT T Sttt e . \..‘.',\’u*‘-. AR AR SO \: \: \'_ \: N




. R e e

P e A

o

¥ Sed 'ab at ’ Tab b At vat AR abo-at, ab Al tptocpl gt gt g D VEUVSVAYVYV XN NRERFRAENS AR

To add a column of numbers, the command is:
UFI>SELECT SUM(STLABOR) FROM BUDGET;

or

UFI>SELECT SUM(STLABOR), SUM(MATERIAL), SUM(OTHER)
2 FROM BUDGET;

This can also be done with a join:

UFI>SELECT SUM(BUDGET.STHOUR), SUM(EXPENSE.STHOUR)
2 FROM BUDGET, EXPENSE
3 WHERE BUDGET.COST_FUN_NO = EXPENSE.COST_FUN_NO
4 AND BUDGET.COST_CL_NO = EXPENSE.COST_CL_NO
5 AND DT = '31-OCT-86";

Rows can also be summed up:

I>SELECT OTLABOR+STLABOR+MATERIAL+OTHER FROM

Or vou can sum both columns and rows at the same time.

UFI>SELECT SUM(OTLABOR)+ SUM(STLABOR)+ SUM(MATERIAL)+
2 SUM(OTHER) FROM BUDGET;

All of the mathematical manipulations are performed in the same way. Consult the
Oracle User Manual for more advanced mathematical manipulations.

f. Group By

Another useful command is the GROUP BY command. It ts especially useful
in summarizing information, such as adding columns. Suppose you want the total

overtime hours budgeted by each cost function for the entire year. The command to
display this information is:

151

N Lt T U E g S O P LR N R SR A, VL W G R YR NG




- o m—

- —

- w

-

-

. P P TN A A
TANCOARAASANE RN ) A Ao R

UFI>SELECT COST_FUN_NO,SUM(OTHOURS) FROM BUDGET
GROUP BY COST_FUN_NO;

Without the GROUP BY COST_FUN_NO, Oracle would not know how to display the
COST_FUN_NO with a sum, since sum returns one total value for all cost functions.
With the GROUP BY cost function, Oracle will return a sum for each cost function as
shown in Figure C.15

COST_FUN_NO SUM(HOURS)

9112 20
9113 100
9114 430
9115 L1350

etc. for each cost function in the data base.

Figure C.15 Output of Using the GROUP BY Command.

g. Sub Queries

A sub query is also useful in summarizing data. A sub query is using another

 select statement to return a value for the main query. An example might make this a

little clearer.

Suppose vou want to find the total expenses to date but vou do not know the
last date of the data in the data base. You could make two separate queries, one to
find out what the maximum date is and one to find the sums for that date. Or vou
could combine it into one query as shown:

LFI>SELECT SUM(OTLABOR+STLABOR + MATERIAL + OTHER)
FROM EXPENSE
2 WHERE DT = (SELECT MAX(DT) FROM EXPENSE):

The sub query returns the maximum value of the date DT which is then used to find

the sum. Notice that the rows are added first and then the sum of that resulting
column is found.

152

e A A At R A B A . B A a A Kl R .




T e W T

v Y

o T Y YW e VT T Y ¥ w

3
p
4

Sub queries can also return a set of values. Refer to the user manual [Ref. 16]
for more on sub queries.

h. Updates

As stated previously, the updates will be handled through electronic transfers
of data from the Prime “\etwork computer. The manager does have the option of
updating on his own, whether to make his data current before the update, or possibly
to assist in answering “What if” type questions. The manager could change expense
figures, or budget figures to see what effects changes have and then graph out the
results.

Updates can also be used to scale values or for global type changes. Or for
example, it could be used to change particular values. The following statement
multiplies each number in STHOURS of the BUDGET table by 60 to find the number
of minutes budgeted for cost function 9118.

UFI>UPDATE BUDGET SET STHOURS = HOURS * 60
2 WHERE COST_FUN_NO = 91185

Update can also be used to change one value:

UFI>UPDATE BUDGET SET MATERIAL = 6465
2 WHERE COST_FUN_NO = 9116
3 AND COST_CL_NO = 97"

i. Deletions

Deletions will generally be taken care of by the updates from the Prime
Network, semiweekly. You can make your own deletions if you wish, however.

UFI>DELETE FROM BUDGET
2 WHERE COST_FUN_NO = 9112
3 AND COST_CL _NO = 02,

This statement would delete the row in the table BUDGET, where Cost Function is
9112 and Cost Class is 02. The same command given on the EXPENSE table would
delete a row for every date whose Cost Function is 9112 and whose Cost Class is 02.

153




m’mmmmmmmmWh1““"ﬂl‘j CEVFHMERRANRANS IR

j- Modifications
Modifications to the existing data base is not recommended on individual
bases. Since updates come from the Prime Network, any additions or deletions of
columns would make these updates impossible, unless all systems and the Prime
Networks reports in which the data is derived are also modified. Under special
circumstances a modification may be desirable. To accomplish this the ALTER
command is used.

UFI>ALTER TABLE BUDGET
2 ADD (YEAR DATE);

The data would then have to be inputted using the UPDATE command described
above.
Tables can also be created and destroved by the CREATE TABLE and the

DROP TABLE commands respectivelv. The easiest way to create a table is to create
UFI files as presented in Appendix A. A sample of how to run UFI files is shown
below.

1. At the DOS prompt run Oracle.

C:ORACLE

2. When Dos Prompt returns type UF1 followed by the at symbol above the 2, @,

and then the LFI1 filename as shown.
C:UFI @BUDGET.UFI

3. This will create vour table, insert the data and create anyv indexes as vou entered
it into the UFI file. See Appendix A for sample L FI filés.

The CREATE command is used as shown below:
UFI>CREATE TABLE PROJ

2 (PROJNO NUMBER NOT NULL,

3 NAME CHAR(10));

A different view or subset of a table can also be created in a similar fashion:

UFI>CREATE VIEW TELEPHONE AS

154
-‘
%y
3
k|
‘o
K
- ~ ..
- R L T e A R Y T R R STl e el e BRI
b:";t' ﬁ)‘:":"?“i%:“:ﬁ::‘:? :}..;\?::' :};.ME::'A:'A\-A\:\--'.L.‘.A\A\A A A PO TRV, W, VL, W, VG WU W VPR ) noath




...... - ety tan . Nt e - e NTTRRRY T .
"‘n-’\v"-\}'" S A A O e T RO SN N M AL IO, S N EA A AT

2 SELECT LAST, FIRST, PHONE
3 FROM EMPLOYEE
4 WHERE EID < "400000000°;

This table would allow vou to look at the telephone numbers of employvees
whose EID is less than 400000000.

The DROP command is used as follows:
UFI>DROP TABLE PROJ;

The table called PROJ will no longer be in the data base unless recreated.
k. Other Goodies

As mentioned earlier, Oracle is a powerful data base management system with
a variety of options and commands. Some of the more interesting ones would be ways
to present the data in a better format. Although the CCI module in the
microcomputer implementation of CCA does much of this for you, you could dress up
those answers to queries or even those provided in the CCI.

A few examples of the basic formatting commands include COLUMY,
TTITLE, BTITLE, BREAK, and COMPUTE. We shall look mostly at COLUMN
and TTITLE here but be aware that these Other commands exist if you need them.
COLUMN formats a column’s heading and data. Instead of having COST_FUN_NO
printed out on a report, you can change it to COST FUNCTION as shown below:

UFI> COLUMN COST_FUN_NO HEADING COST FUNCTION

UF1>SELECT COST_FUN_NO, SUM(STLABOR) FROM BUDGET
2 GROLUP BY COST_FUN_NO;

TTITLE can then be used to place a title on the page.
UCFI>TTITLE BUDGET || BY COST FUNCTION’

BTITLE puts a title at the bottom of a page.

BREAK breaks up the report into groups ot rows.

._.
‘n
Ly

v
_.‘I‘_|



g 8 | N UW U T W T RO R a9 ¢ A La’h ath o'h oVl avl ot8 o8
PR AN T A FTEX] § 4 8 2 8 2 4 4 8°s § TR TR ROV IO TR AR ENERERY

L a2 aVh u*l ath aVa B8 222 ARl o b ALk ath bl

COMPUTE computes totals and subtotals on the report.

If you are interested in these commands see the User Manual for Oracle [Ref. 16].
l.  Editing in UFI
To end this tutorial on the use of UFI, here are some tips on editing. The key
commands are CHANGE, LINE, RUN, LIST, INP, AND DEL. To demonstrate
these commands let us take a select statement:

UFI>SELECT STLABOR, MATERIAL
2 FROM BUDGET
3 WHERE COST_FUN_NO = 9118
4 AND COST_CL_NO > 91

If you run this and vou wish to change something either because of an error or to get a

variation on the information, vou do not have to type the command in all over.

UFI>LIST

This will list the last command you typed in. type:

CFI>LI

That will take you to line 1 and display:

1* SELECT STLABOR, MATERIAL

UFI> CHANGE/MATERIAL/OTHER/

1* SELECT STLABOR, OTHER

Thnis command will change Material to Other in line 1. To execute this type:

UFI>RUN




___._mmm-mnmmwmm" W EFRPEE NN T

This will execute the entire statement. If you want to add lines to the current SQL
command use the INP command.

CFI>INP
5 GROUP BY COST_CL_NO
v 6

This will add this line to the command. Del will delete the current line marked by the
]

UFI> LIST
SELECT LABOR, MATERIAL
2 FROM BUDGET
3 WHERE COST_FUN_NO = ‘9118
4 AND COST_CL_NO > 91’
5* GROUP BY COST_CL_NO;

UFI1>DEL

_Line 5 is now deleted and this SQL statement can be run.

This tutorial briefly describes a procedure that can be followed if you choose
to interface with Oracle at the command level. Remember that statements must end
with a semicolon and that if all else fails, use the Oracle User Manual [Ref. 16]. The
next page summarizes the procedures necessary to access the Ufl and key commands

‘ to issue UFI and SQL commands.
| m. Summary of UFI and SQL Commands for Command Level Processing
1. Turn on machine and allow to boot up.

2. Co&;puter_boots up onto the A: or C: disk drive depending on the particular
configuration.

3. Typein CCA at the appropriate prompt as shown
C> CcAa

4. The first menu gives you a choice of either menu driven or command line.
Choose 2 command line.

5. The following is a list of commands and the formats for using them:

SELECT ATTRIBUTELATTRIBUTE2... FROM TABLENAME

157

-------
................

; - S v . N TR S | "y
mmzﬁﬁﬁaf-:-':2{-‘.-‘.-.-_{~Z§".-,':m".-.':-.ﬁ:u‘t-.'l-.':-.," v



1o aVa AV, ABo gV, A e A R A Lo S
POV U DWW W oW T WO L VY PWUW T OV W WOV UN DY T W T W W DR UW W LW UV W RN Fa 0% A%, ¢80 AL, 4 AN

WHERE ATTRIBUTEI = 'VALLUE’
AND ATTRIBUTE2 = (SELECT ATTRIBUTE2 FROM TABLENAME
WHERE TIME = MAX(TIME),

UPDATE TABLENAME SET ATTRIBUTEI = ATTRIBUTEl 100
WHERE ATTRIBUTE! > 10000;

JOINS:

SELECT ATTRIBUTEIL, ATTRIBUTE2, ATTRIBUTES3,...

FROM TABLENAMEIL, TABLENAME2
WHERE ATTRIBUTE! = ATTRIBUTE2;




“'mmmmmvmz—m:—-—:—-'._.r-—vr e

F RS I R S R R R R

APPENDIX D
CPL AND TELL-A-GRAF PROGRAMS FOR PRIME MINICOMPUTER

. CPL PROGRAMS

a. PR.CPL
/*(PR.CPL) PREPARE REPORTS
/* PROVIDE USER WITH REPORT PRODUCING CAPABILITY WITH TEL-A-GRAF
S&ARGS ANS
/*DISPLAY TOP MENU
R DTS
/*GET USER RESPONSE AND VALIDATE
&SET_VAR FLAG := FALSE /* INITIALIZE FLAG TO FALSE
&DO &UNTIL %FLAG% = TRUE
&SET_VAR ANS := {[RESPONSE 'Select One']
&DO CHECK &LIST S T Q
&IF %ANS% = %CHECK% &THEN &SET_VAR FLAG := TRUE
&END
&IF %FLAG% = FALSE &THEN &SET_VAR ANS := [RESPONSE 'Select

One']
&END
&IF %ANS% = 'T' &THEN R CTEL
&IF %ANS% = ‘Q' &THEN &RETURN
&RETURN
b. DTS.CPL
/*DISPLAY TOP display top menu
R NL2 27
TYPE ! *T - TEL-A-GRAF GRAPHICS
TYPE 1Q - QUIT
R NL2 10
SRETURN

I. N Q-\

J'\

.
o

AN




c. NL2.CPL |
SARGS JUMP g
&DO M := 0 &TO %JUMP% &BY 1 E
TYPE
SEND oo
SRETURN

d. CTEL.CPL ]
/*(CTEL.CPL) CALL TEL-A-GRAF
&DO &UNTIL %FINISH% = TRUE

&SET_VAR ANSWER := [QUERY 'Enter TEL-A-GRAF at COMMAND LEVEL']
&IF %ANSWER% = FALSE &THEN

R MANTEL 2
&ELSE ;
R FREE 1
&SET_VAR FINISH := [QUERY 'Finished'] -
&END e
SRETURN E
e. MANTEL. CPL -
/*(MANTEL.CPL) MANIPULATE TEL-A-GRAF |
/*Select data, type of graph and open TEL-A-GRAF :
&SET_VAR COSTCEN := [RESUME SCC]
&SET_VAR PLOTCODE := [RESUME SPLT] X
&SET_VAR PLOTOPT := [RESUME SPLO] 3
R OPTEL %COSTCEN% %PLOTCODE% %PLOTOPTS \
SRETURN N
. SCC.CPL R
/*(SCC.CPL) SELECT COST CENTER i
/*Select the desired cost center code for use with TEL-A-GRAF ’ ’
R DCC .

ASET_VAR ANS := [RESUME VCC]

160




SRESULT %ANS$%
SRETURN

g. DCC.CPL
/*(DCC.CPL) DISPLAY COST CENTER
/*Display the cost centers that can be graphed with TEL-A-GRAF
R NL2 13
TYPE 'CHOOSE COST CENTER
R NL2 3
TYPE ! 'L - 110
R NL2 10
SRETURN

h. VCC.CPL
/*(VCC.CPL) VALIDATE COST CENTER CODE
/* Request, get and validate the user response to the Cost Center
menu
&SET_VAR ANS := [RESPONSE 'Select One']
&SET_VAR FLAG := FALSE /*INITIALIZE FLAG TO FALSE
&DO &UNTIL %FLAG% = TRUE
& DO CHECK &LIST 1
&IF %ANS% = %CHECK% &THEN &SET_VAR FLAG := TRUE
&END
&IF %FLAG% = FALSE &THEN &SET_VAR ANS := [RESPONSE 'SelectOne‘]
&END
&RESULT %ANS%
SRETURN

i. SPLT.CPL
/*(SPLT.CPL) SELECT PLOT
/*The user is given the ability to select the type of graph TEL-A-GRAF
/*will produce.
R DPLT

161

e, N T T T PR :
L";}:&::Q:};?M}szﬁ;?}:‘lﬁl ‘l':-fkf..f.'frl-i\-{:.f.f.f PRI PO L VL YU TV . PUPR VLIS V0. VO P v ¥ ¢V PRV S S PN

r
.
o
N
1
[
[
‘A

mead




&SET_VAR ANS := [RESUME VPLT]

&RESULT %ANS%
S&RETURN

j. DPLT.CPL
/*(DPLT.CPL) DISPLAY PLOT
/*Display the choices for the type of plot available to the user RNL2
10

TYPE ' 'GRAPH PLOT CODE SELECTIONS:

R NLZ 4

TYPE ! 'A - PLOT OF EXPENSE TO BUDGET WITH

TYPE ! ! BARCHART OF BUDGET OVERLAYED ON
THE

R NL2 1

TYPE ! 'B -~ BARCHART BY COST FUNCTION/COST CLASS OF

TYPE ' ! EXPENSE TO BUDGET

R NL2 1

TYPE ! 'C - COMPOSITE VARIANCE BARCHARTS

R NL2 10

&RETURN

k. VPLT.CPL

/*(VPLT.CPL) VALIDATE PLOT CODE
/*Request, get and validate the user response to the Plot Codemenu
&SET_VAR ANS := [RESPONSE 'Select One']
&SET_VAR FLAG := FALSE /*INITIALIZE FLAG TO FALSE
&DO0 &UNTIL %FLAG% = TRUE
&D0 CHECK &LIST A B C
&IF %ANS% = %CHECK% &THEN &SET_VAR FLAG := TRUE
&END
&IF %FLAG% = FALSE &THEN &SET_VAR ANS
&END
S&RESULT %ANS%

-RESPONSE 'Select One']

162

PP

....................... " S ,'.‘_\_‘r\'_\}\‘_.\

u‘n‘i.i.{_. 1.}_."_.341.1_‘ WAMM@MMLM.E.XA.\AMA&M i Sol_Set SV E_



mmmmwmmmﬂ.v.wwwwnu1“v‘u---u-. T Em -

&RETURN

1. SPLO.CPL
/*(SPLO.CPL) SELECT PLOT OPTIONS
/*Select the option to plot the total cost center or a cost function
/* within it .
R DPLO
&SET_VAR ANS := [RESUME VPLO]
&RESULT %ANS%
&RETURN

m. DPLO.CPL
/*(DPLO.CPL) DISPLAY PLOT OPTIONS
/*Display the menu cost functions that can be plotted under the
/* cost center and for the plot type selected

R NL2 10

TYPE 'PLOT OPTIONS:

R NL2 2

TYPE 'a - TOTAL
TYPE ! 12 - 112
TYPE '3 - 113
TYPE '4 - 114
TYPE ! '5 - 115
TYPE '6 - 116
TYPE ' 17 - 117
TYPE 'g - 118
TYPE 19 - 119
R NL2 10

SRETURN

T RS R G W B REFIVE Y] A




n. VPLO.CPL
/*{VPLO.CPL) VALIDATE PLOT OPTIONS CODE
/*Request, get and validate the user response to the Plot Options menu
&SET_VAR ANS := [RESPONSE 'Select One']
&SET_VAR FLAG := FALSE /*INITIALIZE FLAG TO FALSE
&DO &UNTIL %FLAG% = TRUE
&DO CHECK &LIST A 23456 7 89
&IF %ANS% = %CHECK% &THEN &SET_VAR FLAG := TRUE
&END
&IF %FLAG% = FALSE &THEN &SET_VAR ANS := [RESPONSE 'Select One']
&END
&RESULT %ANS%
&RETURN

o. OPTEL.CPL

/*{OPTEL.CPL) OPEN TEL-A-GRAF

/*Open TEL-A-GRAF and input the user's graph selection. 1If Free

/*Form is selected the user will input the graph selections. &ARGS
COSTCEN; PLOTCODE; PLOTOPT

&SET_VAR SECONDATA := '!

&SET_VAR THIRDINCLUDE := "'

XSET_VAR FQURTHINCLUDE := "'

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = l1AA &THEN

&DO
&SET_VAR DATAFILE := "BEllO"
&SET_VAR SECONDATA := '"BllQ"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "Bl1"
&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1A2 &THEN

&DO
&SET_VAR DATAFILE := "BEll2"
&SET_VAR SECONDATA := "Bl11l0"
&SET_VAR INCLUDEFILE := "EX2"

164

- ol O P PR L TR PR _.4.'..:%.'...'_-, .(.-.‘".._'- .--_‘1\."_..._-.-.'- __--.’.‘.‘.._..-.. ) .o _“ ..--_ -._.:‘._.v_--.,~ A E
h&p’)ﬁ‘\&'«.ﬁ.“-ﬂm}#&A‘:ﬁ'ri‘r}:l’.r..'-r..-..r.ilz.n..r'.‘hz.‘-x--.--A.-A-.- RPN AL I VREIT UL FE -V OV AT TR

% a

L IRV - o= oS S8 g




B "0 a'N.9°8 ¢'% 2’8 ¥ WS a¥h Lti gip Sadd
T T I TR KA AN VKN LA LA U UG g% Vol ead tad ial Sa8 C 474 8 0.0 0% P p 0 0 T
Y AR

&SET_VAR SECONDINCLUDE := "EX112"
&SET_VAR THIRDINCLUDE .= "Bl"
&SET_VAR FOURTHINCLUDE := ''
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1A3 &THEN
&DO
&SET_VAR DATAFILE := "BE113"
&SET_VAR SECONDATA .= "B110O"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EX113"
&SET_VAR THIRDINCLUDE := "Bl"
&SET_VAR FOURTHINCLUDE := ''
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1A4 &THEN
&DO

- W A =

TG

EDy
ot o’

.

-~
-

-

)

"ol

- e

&SET_VAR DATAFILE := "BE114"
&SET_VAR SECONDATA := "B110"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EX114"
&SET_VAR THIRDINCLUDE := "Bl"

o &SET_VAR FOURTHINCLUDE := '’

p &END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1AS &THEN

&DO '

3 &SET_VAR DATAFILE := “BE115"

: &SET_VAR SECONDATA := "B110"

d &SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EX115"
&SET_VAR THIRDINCLUDE := "Bl"
&SET_VAR FOURTHINCLUDE := ''

&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPTS = lA6 &THEN
DO
X &SET_VAR DATAFILE := "BE1l6"
L &SET_VAR SECONDATA := "B110"

sl pe s

- -
"=

Vel e~

165




A AR VNN TN

&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EXlle"
&SET_VAR THIRDINCLUDE := "Bl
&SET_VAR FOURTHINCLUDE := ''
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1A7 &THEN
&DO
&SET_VAR DATAFILE := "BE117"
&SET_VAR SECONDATA := "B1lO"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EX117"
&SET_VAR THIRDINCLUDE := "Bl"
&SET_VAR FOURTHINCLUDE := '!
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = lA8 &THEN
&DO
&SET_VAR DATAFILE := "BEl18"
&SET_VAR SECONDATA := "BlloQ"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE := "EX118"
&SET_VAR THIRDINCLUDE .= "Bl"
&SET_VAR FOURTHINCLUDE := '!
.&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1A9 &THEN
&DO
&SET_VAR DATAFILE := "BE119"
&SET_VAR SECONDATA := '"B1l10O"
&SET_VAR INCLUDEFILE := "EX2"
&SET_VAR SECONDINCLUDE .= "EX119"
&SET_VAR THIRDINCLUDE := "B1l"
&SET_VAR FOURTHINCLUDE := ''
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1BA &THEN
&D0
&SET_VAR DATAFILE := "BBEll0Q"

166

& A B W e



&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := ''
SEND
&IF %COSTCEN%%PLOTCODES%PLOTOPT% = 1B2 &THEN
&D0
. &SET_VAR DATAFILE := "BBE112"
&SET_VAR INCLUDEFILE := “B4"
&SET_VAR SECONDINCLUDE := "B112"
&END
&IF %COSTCEN%%PLOTCODE%PLOTOPT% = 1B3 &THEN
, &DO

&SET_VAR DATAFILE := "BBE1l1l3"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "B113"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1B4 &THEN
&DO
&SET_YVAR DATAFILE := "BBEll4"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "Bl1l4"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1BS &THEN
&DO
&SET_VAR DATAFILE := "BBEl1l5"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "Bl15"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1B6 &THEN
&DO
&%SET_VAR DATAFILE := "BBEll6"
&SET_VAR INCLUDEFILE := 'B4"
&SET_VAR SECONDINCLUDE := “Blle"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1B7 &THEN |
&DO

ot L AT



&SET_VAR DATAFILE := "BBE117"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "B117"

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1B8 &THEN

&SET_VAR DATAFILE := "BBEl1ll1l8"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "Bl18"
&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1B9 &THEN

&SET_VAR DATAFILE := "BBE11l9"
&SET_VAR INCLUDEFILE := "B4"
&SET_VAR SECONDINCLUDE := "B119"
&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1CA &THEN

&SET_VAR DATAFILE := "PB11Q"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR MESSAGE := "9110"
&SET_VAR SECONDATA := '"NBl1l1O"
XSET_7AR SECONDINCLUDE := "NORBAR"
&SET_VAR THIRDATA := "VBl1lO"
&SET_VAR THIRDINCLUDE := "VARBAR"
&SET_VAR FOURTHDATA := "PV11Q0"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&END

%IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C2 &THEN

&SET_VAR DATAFILE := "PBl1l2"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := "NB112"
5SET_7AR SECONDINCLUDE := ''NORBAR"
&SET_JAR THIRDATA := "VB1l12"

168

*
e & 2 Ar R A A S e et e x5 A 4 AN A



-

&SET_VAR THIRDINCLUDE := "VARBAR"
&SET_VAR FOURTHDATA := “PV112"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "9112"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C3 &THEN
&DO
&SET_VAR DATAFILE := "PB1l13"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := '"NB113"
&SET_VAR SECONDINCLUDE := "NORBAR"
&SET_VAR THIRDATA := "VB113“
&SET_VAR THIRDINCLUDE := "VARBAR"
&SET_VAR FOURTHDATA := "PV113"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "9113"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C4 &THEN
&DO
&SET_VAR DATAFILE := "PBl14"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := “NB1l1l4"
&SET_YVAR SECONDINCLUDE := ""NORBAR"
&SET_VAR THIRDATA := "VB1l14"
&SET_VAR THIRDINCLUDE := "VARBAR"
&SET_VAR FOURTHDATA := '"PV114"
&SET_VAR FOURTHINCLUDE := “PERVARY
&SET_VAR MESSAGE := '"9114"
&END
&%IF %COSTCEN%%PLOTCODE%%PLOTOPT% = .CS XTHEN
&D0
&SET_VAR DATAFILE := "PB11S"“
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := "NB1l1l5"
&SET_VAR SECONDINCLUDE := "'NORBAR"
169

.,
.-

4
L

. PR
M ”(. A’A'A{A'A_I.L&

T
LA

~ : ' A I N N B AR ON, PN N Y
.



&SET_VAR THIRDATA := "VBl1S"
&SET_VAR THIRDINCLUDE := "VARBAR"
&SET_VAR FOURTHDATA := “PV115"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "9115"
&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C6 &THEN
&DO

&SET_VAR DATAFILE := "PBlle"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := '""NB1lle"
&SET_VAR SECONDINCLUDE := ''NORBAR"
&SET_VAR THIRDATA := 'VBll6"
&SET_VAR THIRDINCLUDE := "VERBAR"
&SET_VAR FOURTHDATA := "PV1lg"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "91lse"

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C7 &THEN
&DO

&SET_VAR DATAFILE := "PB117"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := "NBLL7"
&SET_VAR SECONDINCLUDE := "NORBAR"
&SET_VAR THIRDATA := "VB1l7"
&SET_VAR THIRDINCLUDE := "VERBAR"
&SET_VAR FOURTHDATA := "PV117"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "9117"

&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C8 &THEN
&DO
&SET_VAR DATAFILE := "PBl18"
&SET_VAR INCLUCEFILE := "PERBaAR"
&SET_VAR SECONDATA := "NBl.13"

[0

...................

-------
.

1
¥
31
]
]
)
N
)
® )




TR SN e T e i w o B Bt

&SET_VAR SECONDINCLUDE := "NORBAR"
&SET_VAR THIRDATA := "VB118"
&SET_VAR THIRDINCLUDE := "VERBAR"
&SET_VAR FOURTHDATA := "PV118"
&SET_VAR FOURTHINCLUDE := "PERVAR"
&SET_VAR MESSAGE := "9118"
&END
&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C9 &THEN
&0
&SET_VAR DATAFILE := "PB119"
&SET_VAR INCLUDEFILE := "PERBAR"
&SET_VAR SECONDATA := "NB119"
&SET_VAR SECONDINCLUDE := "NORBAR"
&SET_VAR THIRDATA := "VB119"
&SET_VAR THIRDINCLUDE := "VERBAR"
&SET_YVAR FOURTHDATA := "PV119"
&SET_VAR FOURTHINCLUDE := 'PERVAR"
&SET_VAR MESSAGE := "9119"
&IF %SECONDINCLUDE% = '' &THEN R SINGLE %DATAFILE% %INCLUDEFILE%
S&ELSE &IF %SECONDATA% = '' &THEN
R DOUBAR %DATAFILE% %INCLUDEFILE% %SECONDINCLUDE%
&ELSE &IF %THIRDINCLUDE% = '' &THEN
R DOUBLE %DATAFILE% %SECONDATA% %INCLUDE% %SECONDINCLUDE%
%SECONDINCLUDE%
SELSE &IF %FOURTHINCLUDE% = '' &THEN
R TRIPLE YDATAFILE%  %SECONDATA%  %INCLUDEFILE%
%SECONDINCLUDE% %THIRDINCLUDE%
&ELSE R QUAD  %DATAFILE%  %SECONDATA%  %THIRDATA%
%FOURTHDATA% .
%INCLUDEFILE% %SECONDINCLUDE% %THIRDINCLUDES
%FOURTHINCLUDE% %MESSAGE%
S&RETURN




r TWUW T UW DT UTUWUY E a f 2k AR A % AR Aok BB Aol Sal el el ol Shilk g et
Vi . VEUY VY DY VTT YTV N rFe Y UN

p. FREE.CPL
/*(FREE.CPL) FREE FORM INPUT TO TEL-A-GRAF
/*Allow the experienced user to manipulate TEL-A-GRAF using it's
commands
5.8 TAG
&TT?
&END
&RETURN

q. SINGLE.CPL

/*(SINGLE.CPL) SINGLE INCLUDE FILE

/*Allows user to input a datafile and include file to TEL-A-GRAF,
having

/*little or no knowledge of TEL-A-GRAF commands.
&ARGS DATAFILE; INCLUDEFILE

5.8 TAG

OATA FILE IS %DATAFILE%.

INCLUDE %INCLUDEFILE%.

SUBPLOT 1.

ORAW 1.

&END

XRETURN

) g g gae pe T g op an SIS iy o

BaR e 2 = e -~

r. DOUBLE.CPL
/*(DOUBLE.CPL) DOUBLE DATA AND INCLUDE FILES /*Allows the user to

input two include files to TEL-A-GRAF with little or no

Y

/*knowledge or experience with TEL-A-GRAF commands.

) xARG3 DATAFILE: SECCNDATA: INCLUDEFILE; SECONDINCLUDE
5.3 TAG

DATA FILE IS %DATAFILE%.

INCLUDE %INCLUDEFILE%.

SUBPLOT 1.

CATAFILE IS %SECONDATA%.

IJUCLUTE %SECONDINCLUCEY.

T —

B2 S SR T s



Sh als ghs o OB _ba AN SRR SbR A i i A e ddh el adhaindiieedindid it

SUBPLOT 2.
DRAW 1 2.
&TTY

&END
&RETURN

s. DOUBAR.CPL
/*(DOUBAR.CPL) DOUBLE INCLUDE FILES
/*Allows the user to input two include files to TEL-A-GRAF with
little or no
/*knowledge or experience vith TEL-A-GRAF commands.
&ARGS DATAFILE; INCLUDEFILE; SECONDINCLUDE 5.8 TAG
DATA FILE IS %DATAFILE%.
INCLUDE %INCLUDEFILE%.
INCLUDE %SECONDINCLUDE%.
SUBPLOT 1.
DRAW 1.
TTY?
&END
SRETURN

t. TRIPLE.CPL
/*(TRIPLE.CPL) DOUBLE DATA AND TRIPLE INCLUDE FILES /*Allows the
user to input three include files to TEL-A-GRAF with little or no
/*knowledge or experience with TEL-A-GRAF commands.
&ARGS DATAFILE; SECONDATA; INCLUDEFILE: SECONDINCLUDE; THIRDINCLUDE
5.8 TAG
DATA FILE IS %DATAFILE%.
INCLUDE %INCLUDEFILE%.
SUBPLOT 1.
DATAFILE IS %SECONDATA%.
INCLUDE %SECONDINCLUDE%.
INCLUCE %THIRDINCLUDES.
SUBPLIT 2. ‘

aEE o g o

CPL R A R IR IS S S S I LI
IR n."!."!.’.\(\’.\f‘-':'-{‘- T L e Lt



DRAW 1 2.
&TTY
&END
&RETURN

u. QUAD.CPL

/*(QUAD.CPL) QUAD DATA AND INCLUDE FILES

/*Allows the user to input four include files to TEL-A-GRAF with

little or no

/*knowledge or experience with TEL-A-GRAF commands.

&ARGS DATAFILE; SECONDATA; THIRDATA; FOURTHDATA; INCLUDEFILE:
SECONDINCLUDE; THIRDINCLUDE; FOURTHINCLUDE; MESSAGE

5.8 TAG

DATA FILE IS %DATAFILE%.

INCLUDE %INCLUDEFILE%.

C.

TITLE TEXT IS "PERCENT EXPENDED %MESSAGEX%.

SUBPLOT 1.

DATA FILE IS %SECONDATA%.

INCLUDE %SECONDINCLUDE%.

DATA FILE IS %THIRDATA%.

INCLUDE %THIRDINCLUDE%.

DATA FILE IS %FOURTHDATA%.

INCLUDE %FOURTHINCLUDE%.

DRAW 1 2 3 4.

&TTY

&END

&RETURN

2 TELL-A-GRAF PROGRAMS
a. TAGPRO.DAT: Tell-A-Graf Profile file
PRIMARY DEVICE IS TEKTRONIX.
PRIMARY DEVICE MODEL IS 4105.
PRIMARY DEVICE DRAWING CRIER I35 .
SECCHDARY DEVICE IS 7TP.

4
<
<
9
L
‘4

- - . - . e T e e e et et et Mt et Y et
P c et L A N R R T S L R - RIS AR e T T e
"\::'x*i"i'-;\':"i"i .':'LA ’:A"_"_‘..:"..\.'A\..'r_."J\:.\‘}_. RS VW Y A SN VTR VROV VWA TS TN AN TR Ve VS 3R VA WS Po W'Y




VitW WO W e Ty W W TR W RV

PAGE LAYOUT IS HORIZONTAL-REPORT.
ERROR REPORTING LEVEL IS 3.
EXIT.
b. Bl: Bar Chart For Budget
GENERATE A VERTICAL BAR CHART .
INDEPENDENT DIVISION-LABELS IS '112' '113' 'l1l14'

‘115" ‘1lie' '117' '118' '119‘'
INDEPENDENT LABEL TEXT IS "COST FUNCTION"

% DEPENDENT LABEL TEXT IS "MILLIONS OF DOLLARS" .
g AXIS FRAME IS 1.
. WINDOW DESTINATION IS -1 6 4.099999 10.

WINDOW DESTINATION FRAME IS 0.
TITLE TEXT IS "FY 36 BUDGET FOR" "COST CENTER 9110"

**EILEX*

RRNAR . 4

c. EX2: Plot of Budget vs Expense
GENETATE A PLOT .
X AXIS DIVISION-LABELS IS "0oCT" v“NOV" “DEC'" "JAN"
"FEB" 'MAR" "APR'" “MAY" '"JUN" “JUL" "AUG" "SEP"
X AXIS GRID IS 0.
X AXIS LENGTH IS 8.5S.
X AXIS LABEL TEXT IS "END OF MONTH" . X AXIS SHIFT IS 1.
7 AXIS SRID I5 ).
? AXIS MODE IS REVERSED.
aXIs QOFFSET I35 3.
AXIS FRAME Is 3.
WINDOW DESTINATION IS -1 10 -2 10.
LEGEND FRAME IS 1.
LEGEND X ORIGIN IS 11l.
LEGEND 7 JRIGIN IS
LEGEND UNITS IS COCRDINATE.

~

£t

MESSAGE 1.
MESSAGE COMNMECT POINT IS 0.5 -30.5. MESSAGE TEXT IS
"BUDGET 7S ZXPENSES"' "CCTST IZNTIR 3Ll

NmAm vp e e meseymme aven
FOR OALL 28T FAUCTIUS




koo

MESSAGE UNITS IS INCHES.
MESSAGE X IS 9.
MESSAGE Y IS 6.
MESSAGE 2.
MESSAGE CONNECT POINT IS 0.5 -0.5.
MESSAGE TEXT IS "MILLIONS®
MESSAGE UNITS IS COORDINATE.
MESSAGE X IS 10.5.
MESSAGE Y IS 4.
**FILE**
d. EX112: File Appended to EX2 For 9112
MESSAGE 1 “BUDGET VS EXPENSES" "FOR COST FUNCTION 9112".
MESSAGE 2 TEXT IS "THOUSANDS'".
**FILE**
e. EX113: File Appended to EX2 for 9113
MESSAGE . "BUDGET 7S EXPENSES" "FOR COST FUNCTION 9113".
MESSAGE 2 IS "THOUSANDS".
**FILE**
£. EX114: File Appended to EX2 for 9114

MESSAGE 1
MESSAGE 2

TREILE**

3.
MESSAGE .
MESSAGE 2

*HEFILEA*

a.
UESSAGE
MESZAGE 2

SATILE**

I Ty / To
/, "_\’.v‘:\{. n.. L

"BUDGET VS EXPENSES"
IS "THOUSANDS".

ZX115: File Appended
"BUDGET VS EZXPENSES"
1S "THOUSANDS".

IXlil6: FL
"BUDGET VS EZXPEINSES"
IS "THOUSANDS'".

le Appended

"FOR COST

to EX2 for 9115

"FOR COST FUNCTION 9115".

to £42 for 2l.6

"FOR COST FUNCTION 9llée",

g 280 a0 ath V4 UG o4 AL Lol gRl oS e

EUNCTION 9114".

fl
i
%

-

- P . . . ‘
0 te e .'_‘ z".'_'l_l_\'d_l‘lm.l_ﬂ.ﬂ-n’.‘ A-A-l' lA(.I.(-l’.[.AA‘.A‘.‘u fatas it atata e et atataaia




M TARNLNYNERNER WAL TUTEJ

i. EX117: File Appended to EX2 for 9117
MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 911i7".
MESSAGE 2 IS "THOUSANDS".
**FILE**

j. EX118: File Appended to EX2 for 9118
MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 3118".
MESSAGE 2 IS "THOUSANDS'".
AXFILE**

k. EX119: File Appended to Ex2 for 9119
MESSAGE 1 "BUDGET VS EXPENSES" !""FOR COST FUNCTION 9119%.
MESSAGE 2 IS "THOUSANDS".
*XFILEX*

o« e eI VPR S e ¢ RS B I B O m— = = =

h

l. B4: Triple Bar Chart, Budget, Budget %, Expense
GENERATE A VERTICAL BAR CHART .
INDEPENDENT DIVISION-LABELS IS 'l112' '113' '114'
*115' 'l1l1le*' '117' '118' '119'
INDEPENDENT LABEL TEXT IS "COST FUNCTION"
DEPENDENT GRID IS 1.
DEPENDENT LABEL TEXT IS "MILLIONS OF DOLLARS"
AXIS FRAME IS 0.
TITLE TEXT IS "FY 86 BUDGET VS EXPENSES"
"COST CENTER 110",
LEGEND FRAME IS 1.

**FILE**

by d

R =W

m. Bll2: Appends B4 for 9112
DIVISION LABELS '02' ‘'03' '04' '11' ‘'12' '19'
f30' '33* 39t '68' '91' '93' '9* ‘'97' '98',
X AXIS LABEL IS "COST CLASS",
TITLE IS "FY 86 BUDGET VS EXPENSES' "COST FUNCTION 9112%.
DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
*AFILE**

~ ey e L R L M P Wt A Nt SR S
Lf-,'.-_'.-.ﬂ.& }.L'..L'..Q_'.u AT YPEIIAE (N WIS S W Gy o oA D,




n. Bl13: Appends B4 for 9113
DIVISION LABELS '04' '39' '91' '92' '93' 'Se' '99',
X AXIS LABEL IS "COST CLASS'.
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 9113%.
DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS'",.
*RFILE**

o. Bll4: Appends B4 for 9114
DIVISION LABELS '04' '94' '95',
X AXIS LABEL IS '"COST CLASS".
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 9114".
DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
**EFILER*

p. Bl15: Appends B4 for 9115
DIVISION LABELS '02' '91' '93°',
X AXIS LABEL IS '"COST CLASS“.
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 911sv.
DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
*kFILE*%

g. B116: Appends B4 for 9116
DIVISION LABELS '03' '04' '91' '93',
X AXIS LABEL IS "COST CLASS".
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 91lle".
DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
**FILE**

r. Bll7: Appends B4 for 9117
DIVISION LABELS '03' '12' *+33' ‘68' '91' '93' '9s'
X AXIS LABEL IS "COST CLASS",
TITLE IS "FY 86 BUDGET VS EXPENSES"
“COST FUNCTION S9117".

178

il itttk ok aka

oy

‘97°'.

P taa 2 2P AW P ual

]
:
J
‘
i




o AP Y. Al. Ria- R la S e ke Slla o fbhbihadidlie i

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
**FILE**

s. Bll8: Appends B4 for 9118
DIVISION LABELS '91' '93'.
. X AXIS LABEL IS "COST CLASS".
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 9118",

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
*KFILE**

t. Bl19: Appends B4 for 9119
DIVISION LABELS '04'.
X AXIS LABEL IS "COST CLASS'".
TITLE IS "FY 86 BUDGET VS EXPENSES"
"COST FUNCTION 9119".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".
*AFILEX*

u. PERBAR: Bar Chart Percent Expended
GENERATE A VERTICAL BAR CHART.
INDEPENDENT DIVISION-LABELS IS 'ELPSED' 'STD TIME'
"OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.
DEPENDENT SCALE MAXIMUM IS 100.
OEPENDENT SCALE MINIMUM IS O.
DEPENDENT SCALE STEP~SIZE IS 20,
DEPENDENT LABEL TEXT IS "PERCENT".
TITLE TEXT IS "PERCENT EXPENDED".
BAR ROOT IS O.
AXIS FRAME IS 1.
{ AXIS ORIGIN 1.5, LENGTH 9.

Sfmf.’.ﬂﬁmé:'_ﬁ. T i AT KRR P P A R A T oW Sm—. A~

v

Pl

r

~
“
-

v - v

' 7 AXIS LENGTH 1.25, ORIGIN 5.25.
-~

% SUBPLOT 1.

s ARETTLE**

»

N

18

"

“»

M

£ S %
-_—

1

O

AN RN Lad e S f T Ol Fa S
Ty R ST G s Ty vy Mg o, SN o PR

R haLAR

gt At
s AT AN ¢




Y AR P R TS T R WU Y WU O OGN AT TR TN T R TUW TN UT UV VW L S U A R RO AT AT R RA NIRRT R TR AV AR Ty TR TN RA RV B T e

v. NORBAR: Bar Chart Normalized for Elapsed Time
GENERATE A VERTICAL BAR CHART.
INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'

'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.

TITLE TEXT IS "DATA NORMALIZED ON PERCENT ELAPSED TIME'".
BAR ROOT IS 1.

X AXIS ORIGIN 1.5, LENGTH 9.

Y AXIS LENGTH = 1.25, ORIGIN = 4.25.

¥ GRID ON.

AXIS FRAME IS 1.

SUBPLOT 2.

*XFILEX*

w. VARBAR: Bar Chart Variance in Dollars
GENERATE A VERTICAL BAR CHART.
INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'
'"OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.
INDEPENDENT GRID IS 1.
DEPENDENT LABEL TEXT IS "DOLLARS",
TITLE TEXT IS "VARIANCE IN DOLLARS'".
BAR ROOT IS 0.
X AXIS ORIGIN 1.5, LENGTH 9.
7 AXIS LENGTH = 1.25, ORIGIN = 2.25.
AXIS rRAME IS 1.
SUBPLOT 3.

AAFTLE**

X. PERVAR: Bar Chart Percent Variance
GENERATE A VERTICAL BAR CHART.
INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'
'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.
INDEPENDENT GRID IS 1.
INNDEPENDENT LABEL TEXT IS "“PERCENT".
TITLE TEXT IS "PERCENT VARIANCE".
X AXIS ORIGIN 1.3, LZNGTHK 3.
7 AKIS LENGTH = 1.25, ORIGIN = .25.

150

. Lt -~
----- LA 7.
N e LT e

~

A DL S P O U P N A L AR S W . LT U e s ;- .F N
m n.‘ﬂ&'l\' T Y W VY At N L‘&L\‘.-.‘-A_\ x. S N A s L L N W S VAV T VS s T VAN, S PV Y N VR W W O WL Y SR e 0, )

e e

RS
[, F W,



memmmmmmmmWWW\WWW""viu-ulu—- ----------------------

BAR ROOT IS 0.
AXIS FRAME IS 1.
SUBPLOT 4.
*kETLE**

y. Bl110: Data File for Bl
INPUT DATA.
"BUD86"
1 0.77287 2 2.13234 3 4.33018 4 0.05306 5 0.27409 6 1.48263
) 7 0.0898 8 0.507
END OF DATA.
**FILEX*

z. BE11l0: Data File for EX2

INPUT DATA.
: "BUDGET"

0 01 0.8035 12 9.64198
"EXPENSES"
001 0.92 2 1.59901 3 2.4567 4 3.3456 5 4.0002 6 4.78999 7
5.477 8 6.008 9.2 6.91127
END OF DATA.
**FILE**

p o

aa. BBE110: Data File for B4

INPUT DATA.
"BUCGET"
1 0.77287 2 2.13234 3 4.33018 4 0.053063 S 0.274093 5 1.48263 ¥
7 0.0898 8 0.507
"BUDGET%"

1 0.60284 2 1.66322 3 3.37754 4 0.04139 5 .21379 6 1.15645 7
.07005 8 0.39546
"EXPENSES"

1 0.69411 2 1.3034 3 3.31009 4 0.04487 5 0.21733 6 1.10264 7
0.0665 8 0.17234
END OF DATA.

**FILE**

181

Y e s amamaaaaa




AVL 20, gV B, Bln 2%, Rta R¥a A o AR i f ARt d 2ok ol Ak el
mwnmmmwwmnmmmmm

ab. PB110: Data File for Perbar

INPUT DATA.
"PERCENT"
1,20

2,20

3,45

4,18

5,17

6,19

END OF DATA.
*kEFILEX*

ac. NB110: Data File for Norbar
INPUT DATA.
"NORMAL"
1,1
2,.95
3,2.2
4,0.7
5,0.55
6,0.75
END OF DATA.
**FTLE**

ad. VB110: Data File for Varbar
INPUT DATA,
"VARIANCE"
1,0
2,-3000
3,1000
4,-10000
5,-70500
6,-79980
END OF DATA.
*RFTLEXK

182

[ aaal @ B RLLALLND A 510

..............................

| P E NI BRI S A N 8 N SR, O T SR,




o X

L N PLPALS

ae, PV110: Data File for Pervar

INPUT DATA.
"PERCENT VARIANCE"
1.0

2,-5

3,110

4,-35

5,-41

6,-30

END OF DATA.
*AETLEX*




T T oY ST N P OS CU T UrW OU D Ol O T R O OV DU O W D O DV TW U W UW U DV I ST U W U X T VR WX Ry iy i e

APPENDIX E
C PROGRAMS FOR THE MICROCOMPUTER

. CCAC
#include ‘"colors.h"
%include "ctype.h*
#include "filedata.h*
Sinclude "intregs.h”

| #include ‘'“stdio.h"

/% Global Variables w/
#define BACKGRNO 8BLUE /% Background color %/
3define FOREGRND YELLOW /% Foreground color %/
#define FORTY 0 /% Code for forty column mode #/

sdefine EIGHTY 2 /% Code for eighty column mode ®/

extern getbud( )y
extern gettotf( s
extern gettotc( )y
axtern gettotfct )
extern getempjo( )3
axtern getemp( 4
extern getfemp( !
axtern getmgr( s
axtern getanal( )s
extern gatjocemp( )s
axtarn getjoemal )
axtern getfjol )y .
extern getcjol )y
extern gethour( )y
extern getlab( )y
extern getmat( )

extern getath( )y

184




mmvmmmmwwvmerwww WV W . WL WL WO R W WS WA W W e e

struct filedata filstrucs
long int _stack = 20000;

8include "orcainrp"

maini)
/% 1 main begin »/
char selact(286],
: shdey

char
rames(21),
cfrol51,
clnol51,
jono(51,

jnamelS0)s

char %budget[1001;
int i, j, pg, pflag, plines, inplll, lines, nlines:
inpllll,
irp2l11],
irp3(11],
inpall],
inp5(11,
! irp6lll,

inp?l1 ]y

short curs(21i32]s /% lde and three cursors »/

/IHHHIHHHHHHHHHHHHHHHHHHHHHHEHHHBHHHEHHHBHHHHHHHOHHHBEHHEHEHE /
/% program module Cost Centar Analysis ®/
/% version 1.0 »/ A
/n suthors: Richard N. Moodman »/
/% Michael F Rall »/ .
5
/% »/ .
e »/ 1
Bl
/% %/ !
!
185 .

K
4
{
"
Y

o, oyt PR AT NP e P e CaPe Ta
m&‘.‘mwj.‘C&').".\'C&f‘\fh‘;i’;\:'u'ufum?;} .ac.'r._'.a?.a.‘mﬁ'



" . 1 . i 0 [] g 12 . . 13 - AJ * . . * W/ LA B AR o R At 4 d il il il

/7" Program last modified 20 Jarnuery 1986 »/
/» n/
/% This program wes produced on sn IBM PC using »/
/% DOS 3.1. HWritten with the C programming language, n/
/% utilizing the GraphiC utility software. »/
/% n/
/% Main module; controls entry to the Cost Center n/
/% Information modules or to the Command Level Entry »/
/%  mode. »/
/% »/
/n »/
/% »/
/% Input/Output Files used: None n/
/% n/
/% Other Mocules Called: COMDLEV, CCI »/
/% »/
/% Called by: None »/
/% o/
/% Local Variables: irp u/

/IHBHHHHHHHHHBHHHEHHEHHHHHEHHEHHA A /

satscmod( EIGHTY ))
clscolor{ FOREGRND ,BACKGRND )3
border(BACKGRND )3

/% */

irpllol = * 0's
irp2l0) = * 0
irp3lo] = * 0y
irpalol = ' 0"y
inpslo]l = ' 03
irp6l0} = ' 0"y
irp7(0] = ' 0*y

clearthescreen( )3

clscolor(164,31y

186

N A ,5 \f,\q“ s e J'\f\.f, .;-\.P -'-'.-,‘_. RPN RO -'.‘-'.‘-A'.'\"'-""-" e Tt T TN



-~ -

T

& .

Y
-l

LAY

riteborder( ))

clearkbd( )y
do
/% [ "/
clearkbd( 1}
imp(0] = ' 0's
curlocat(4,1)y

colrcprt("COST CENTER ANALYSIS ",14,3)s

curlocst(6,1))

colreprt(”l. Cost Center Information “,14,3)

curlocst(8,1)s
colreprt(”2. Cost Center Informstion Using ",14,3))
curlocat(9,1)
colreprt( "Oracle Command Language (SQL) For Adhoc',14,31%
curlocat(10,1)3

colrcprt(“Queries, Inserts, Deletes and Updates",14,3)y
curlocat(14,1)
colrcprti“"Selection: "14,3)
curlocat(1lé,1)}

colrcprt({"A blank line exits to DOS "*,16,3)

curlocat{ 14,451

getinti1,1,1,1,2,4inp,0,1,31}

if (inp(0] = * 0')

curlocat(1S,1)
colreprt(Is this correct? "y14,3)3

curlocat(15,45)

i ecoyesnal 15,45,1)%

if (impl0] == ' 0")

i=1)

while (i !'= 1)y

187

o

-




T Y R S CERE S SO CTTOCEER v 2 LT L TEEE T R a——m—m - - = ——— - !

o
«
-
-

AT w

P

e
RPN,

ourlocat(16,45))

T4 »/

if LirplQ] 2= ' 0') goto done)

if tirpl0] =3 1)

/% Logon to ORACLE =/

if tolonlicurs(0],"sys tem/marager*,-1,-1,-1,0)1}

/n 2 »/
errrpticursi(0],4)
goto done

/% 2 "/

/ FHHHHHHHHHEHHHHHHHHHEHHHEHHHHHHHHHHEHHHHHHHHHHHHRHHHHHNE

/% program module Cost Center Information »/
/% version 1.0 n/
/n authors: Richard N. Woodman »/
/% Michael F Rall »/
/n n/
/% n/
/% »/
/% Program last modified 20 January 1986 »/

/% »/
/% This program was produced on an IBM PC using »/
/% DOS 3.1. HWritten with the C programming language, »/
/% utilizing the GraphiC utility software. »/

/" »/

/% Main menu driven shell for Oracle. Allows easy accass %/
/%  to specified information and display of thet informa- »/

/%  from Oracle. Also sends specified data to a file for »/

/%  the Graphics utilities. »/

/n »/

/% Output files: GRAF, GRAF1l, BUD »/

/n »/

/% Mocdules called: BUD_EXP, EMPINFO, JOINFO »/
188

AT AL AT AT R AR A A A R R A P N T R
N RN S R SASA A SRACY I, A SRV ),




/n »/
/n Called by: CCA »/
/" »/
/% Local Vesrisbles: irpl »/

/ MEHHHHHEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHEHHHEHHHHHH

far (33
/% 3 begin main while statement =/

clearthescreen( ))
clscolor(14,3)
riteborder( )}

clearkbd( )y
do

/7n L3 »/
clearkbd( )}

inpllo] = * 0y
curlocatia,lly
colrcprt(“INFORMATION AVAILABLE “,14,3))
curlocat(6,1))
colrcprt(i™l., Budget VS Expenses “,14,3))
curlocat(10,1)y
colrcprti*2. Job Order Information ",1¢,3)%
curlocat(14,1)s
colrcprt("Selection: ",16,3)
curlocat(16,1)}

colreprt( A blarnk line exits ",14,3))

curlocat(14,45))

ﬂtint(1.1:1.1.2»!1&1.0-1.3“

if tirpll0l] '= * 0*)

curlocatil5,1)

189

; - N e e e e B NP TR UL N
mf :ﬁ&-'gfc’qf;\';"‘f\\'&l A T e Ot At et A Yl

e

N,
‘@

P PR )
P 3

[}
AN

e

PYARALIAN

4

. v
S

PR




\
-

b2

AN 4

“,14,3 0

curlocat( 15,4511
i = ecoyesnol(15,45,11])

if (impll0] 2= ' 0')
izly .

while (i = 1))

curlocat(14,45))
/% n/

/Wmﬂmmmm/

/%

/%

V4 J

/%

/%

/%

/%

/7%

/%

/%

/%

/%

/n

Ve

/%

/%

/%

/%

V. ]

/%

/%

v,
'f_'f:

., .« -

FAPAP NI I AN SN N

colrcprtils this correct?

if (irnpll0] == * 0') break)

program module Budget vs Expenses »/

version 1.0 »/

authors: Richard N. Hoodman »/

Michsel F Rall »/

»/

»/

=/

Program last modified 20 Jamnuary 1986 »/

%/

This p.rognn was produced on an IBM PC using »/
DOS 3.1. NWritten with the C programming language, »/
utilizing the GraphiC utility software. 74
.74

Allows display and comparison of budget and actual »/

axpense information by various categories. Interfaces %/

specified data with graphics for further displays. */
»/
Output files: GRAF, GRAF1l, BUD */
»/
Modules called: GETBUD, INDVDISP, TOTBUDEXP ./
L 74

190




PR 2% o'} 2"8 2'4 o%8 a'h 2’8 2°0 a8 A8 o74 (R L U0 o80 oFR aid gl Rl A R ANh A il e ddde ek it il

/% Called by: CCI »/
/n ®/
/% Local Variables: inp2 »/

/IBHHHEREHHHHEEEHRHHHHEEHBHHHOHHEHHEHHHHHHHOHHHHHHHHHEHHEHEE /

if (impll0] == 1)

Pl TALLSAASS  Aee RS, Vot s

for(ys)

clearthescreent )s
clscolor(14,3)s
ritebordert )
do

;: clearkbd( )}

0 curlocat(4,1))

! colrcprt{ "BUDGET VS EXPENSES ",14,3)3

tg curlocatl(e,l]y

L: colreprt("l. Total Budget VS Expenses to Date

",14,3)
. curlocat(s,1)

%i colreprt("2. Labor or Matarial or Other ",14,3))

'." curlocat(10,1)s

v colreprt("3. Budget by Cost Func/Cost Class",14,3)}
curlocat(14,1);
colrcprt("Salection: ",16,3)3
curlocat(16,1);
colreprt("A blank line exits ",14,3)
curlocat(14,45))

e getint(1,1,1,1,2,8irnp2,0,1,3 )

g if (inp2f0l 1= ' ¢")

curlocat(1l5,1)s

colrcprt("ls this correct? -

j curlocat(15,451,
.(




,T
3
w

|~
™3

| ©

! w
w

| W
-

&
~

| »
>
@
-
x
a
El

| &
-]
-1
i W
-y
o
a
-~
W
"]
-1

THE WARE ISLAND NAVAL SHIPYARD(U) NAVAL POSTGRADUATE
H F RALL ET AL.

AO-R183 294




A}
¢

o mmmwm_____ :
_w mmmm

EEEFETTTN

s

14

10

I-I
——
—
——

1.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




i = ecoyesno(15,45,1);

if tirp2(0] == * 0*)

is L
/% END DO LOOP FOR 2ND MENU IF MENU 1 = 1
while (i != 1)

Vs ] »/
if (inp2(0] == * 0') breaks
/IRBHHIHHHEHHHHHHHIHHHHHHEHHHHHHHHHEHEHHHHEHHHHHHHHHEHHEHE/

/% program module Total Budget vs Expenses®/
/» version 1.0 »/
g authors: Richard N. Koodman t 74
/% Michael F Rall »/
Ve »/
/% #/
/% »/
/n Program last modified 20 January 1986 n/

/% »/
/% This program was produced on an IBM PC using n/

/% DOS 3.1. HWritten with the C programming language, n/
/n utilizing the GraphiC utility software. n/
/% »/

/% Sums labor, material and other for budget and expenses »/

/% to date by cost function, cost class, cost functionv w/
/%" cost class and cost center as requested and sends data ¥/
/% %o graphics routine when directed. »/
/% n/
/% Outputs GRAF, GRAF1, BUD » »/
/% n/

7% Modules omlled: GETTOTF, GETTOTC, GETTOTCF, GETSUM »/

/n n/

/% Called by: BUD_EXP »/

7% »/

/» Loesl Variables: imp3 »/
192

Mmmmmmmmm&m&&-

»/




e . e

ek W 4G ON

- - -

e

o )

-_w
-

) o

-
-

WSt

)
v.O A

o™,

- -

)

N ‘ Y MO W N YN >~ , NN
".*.' \" Q"J K l..."‘\ .l"n"..'._‘.l".& '.'\. .q‘ ) ‘;“.‘.‘g‘, SR G .".’ .C'.Q...‘,’. MO R P N atin "h‘. WS ' MY AN nl h ‘kﬂ ¥

if (ir@2(0] == 1)

for(sy)

clesarkbd( )3

clearthescreen( )}
clscolor(14,3)s
riteborder()s

do

curlocati(4,1))

colrcprt("TOTAL BUDGET VS EXPENSES ",14,3)3
curlocst(6,1) '
colreprt(”l. Cost Function ",14,3)s
curlocst(8,1)s

colrcprt(2. Coat Class ",14,3)s
curlocst(10,1))

colrcprt(*3. Coat Function Cost Class "*,14,3)
curlocat(12,1)s

colrcprt( 4. Cost Center “,14,3);
curlocat(14,1)s

colrcprt(“Selection: ",164,3)s
curlocat{l16,1)s

colrecprt(”A blank line sxits "“,14,3 0
curlocat(14,45)3
getint(1,1,1,1,2,8irp3,0,1,4)3

if (irp3(0] = * 0*)

curlocat(15,1))
colreprt("Is this correct? "*,14,3)3
curlocat(15,45))

i = ecoyesno(15,45,1))

193




if (inp3(0] 2= * Q')
i=1
while (i !s 1)3
if (inp3(0] == * 0°) bresks

clscolor( FOREGRND ,BACKGRND )3
curlocst(15,15)s

colrprts("Total Budget VS Expenses in Thousarnds of Dollars™,

FOREGRND , BACKGRND )
peusel )3

if (irnp3(0] == 1)
hdr = * COST FUN BUDGET EXPENSE

In Thousands "
strepy(select; selbfun)s

| gattotfiselect,; hdr, curs);
[

| if Uirp3lo] == 2)

hadr = * COSY CLS SUDGET EXPENSE
In Thousands "y
stropy(salect; selbcl)s

gattotc(salect, hdr, curs)s

if (inp3l(0] 2= 3)

e s * COST FUNC COST CcLS BUDGET EXPENSE
In Thousands ")
stropy(select, selbofcl)y
gettotfc(salect, hdr, cursly

it (irp3(0] == &)

194

D AR NN YRR Y IR



DATE In Thousands "3
strcpy(select, seslsum))

getsum(select, hdr, curs)s

Vi ] program mocule INDVDISP

/n version 1.0

/n authors: Richard N. Woodman

/n Micheel F Rall

/n

/%

/n

/" Program last modified 20 Jasmusry 1966

33

This program was produced on an IBM PC using

/% 008 3.1. Nritten with the C programming languegs,
/% utilizing the GrachiC utility software.

Vi ]

/% Display budget vs expenses to date for either labor,
/% material or other, sorted by Cost Function/Cost Class.
7

/% Irput/Output files: None

Vs

/% Modules Called: GETLAB, GETHOUR, GET;‘MT. GETOTH

/7

/% Locsl Varisbles: irpd

if tinp2(0] == 2)

hdr = "COST CENTER 9110 BUDGET EXPENSE

/HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHEHEHHHHHHHEHHHHHHHBHHHEE/

»/
n/
»/
n/
n/
»/
n/
n/
n/
n/
w/
»/

n/
»/
»/
n/
n/
»/
L4
»/
n/

7/ THHEHHEHHHHHHHHHHHHHHHHHHHHHHHHRHHHEHHHHHHEHHHHHHEHHHEHH/




for(ss)
clearthescreant ))
clscolorile,3))
riteborder( )y .
do
clearkbd( )3
ourlocat(4,1))

oolroprtt™ BUDGET VS EXPENSES “,14,3);

ourlocat(6,1)3

colrcprt(”l. HOURS "»16,3)s
curlocati(8,1)s

colrcprt("2. LABOR "»16,3)3
ourlocat(10,11)

oolreprti“3. MATERIAL ",14,3)3
ourlocat(12,1)s

colrcprt(”e. OTHER *514,3)) N
curlocat(14,1)s

colreprt( "Selsction: 14,308
curlocat(16,1)s

colreprt( A blank line exits ",14,3)
curlocat(14,48)s
getint(1,1,1,1,2,8inp4,0,1,4))

if tinpalol s * 0°)

curlocat(1S,1))

colroprt(“Is this correct?”
»14,3 )

curlocat(15,45))

i = gocoyesno(15,45,1);

if (inpal0] == ' 0')
is 1y

196




while (i 1= 1)

1f (inpal0] == * 0') breek)

olscolor( FOREGRND ,BACKGRND ) 3

curlocet(15,18);

colrpris(” Dudget VS Bxpensses in Thousands of Dollars™,
FOREQORND ,BACKGRND )3

pousel )y

. if tirpalo] == 1)

hdr = * HOURS: COST FUN COST CLS

stropy(salect,; selhour))
gethour(select;, hdr, curs);

if tirpalo) == 2)

hdr = * LABOR: COST FUN COST CLS
SUDGET EXPENSE In Thousands™s
stropytselect; sellab)s
gatlablselect;, hdr, curs))

1f (ir@alQ] == 3)

hdr = * MATERIAL: COST FUNC COST CLS
BUDGET EXPENSE In Thousands ot )
stropy(sslect; selmt)s
gotmatiselect; hdr, ours))

1f (inpel0) == &)




hdr = * OTHER: COST FUNC COST CLS
SUDGET EXPENSE In Thousands™;
stropy(select;,; ssloth)y

getoth(select, hdr, curs)s

if (ire2l0]) == 3)

©elscolor( FOREGRND ,BACKGRND ) »
ourloocat! 15,20))
ocolrprts(*Budget By Cost Function Cost Class
in Thoussnds of Dollars™,FOREGRND ,BACKGRND )}
pousel )}

for (J = 23 §J € 103 j¢¢)

stropy(select, selfun)s

stroat(selsct,”' 911" )
i€ () == 2)
hder = *9112 COST CL LABOR MATERIAL
OTHER IN THOUSANDS “s
stroatiselect,”2%))
i€ (§ == 3)
hdr = “9113 COST CL LABOR MATERIAL
OTHER IN THOUSANDS" )
stroat(select,"3")) .
it () == &)
hdr = “9114 COST CL LABOR MATERIAL

198

A TR A NP TR A A e A e e m g - et AT A TR TAY At aTtmTmTmta- .9
..‘\.. by .“. v‘ ._ "‘A f f~f n‘f f ?# J‘i"f-f o & Py Ty

Y » P s
4 A} LIS .
.y ‘ﬂ,'-‘,"', R A W, "}"n. .n" l. (Y } "1,.‘0.. .. (R



OTHER
stroat(select,”4"))

1¢ () == §)

hdr = %9118 COST CL

streat(select,”5");s

i€ (§ == 6)

hdr = *9116 COST CL

stroatiselect,"6"))

if () s=7)

hder = %9117 COST CL

stroat(select,"7")s

if (} == @)

hdr = %9118 COST CL

OTHER

streatiselect,”8"))

if(j=my)

hdr = *9119 COST CL

OTHER

strecat(select,”9"))

strcatiselect,”'"))

IN THOUSANDS" s

IN THOUSANDS®3

IN THOUSANDS™3

IN THOUSANDS™)

IN THOUSANDS™)

getbudiselect, hdr, curs)

199

< e, LA P T N Pt oy AR RS R G, Yy \..'.' LR "
G o A

MATERIAL

MATERIAL

MATERIAL

MATERIAL

MATERIAL

W ..- " “' _" ‘.1 RN __:..‘. .‘.‘.'('\

- -

o™~ =af el

w, «",



/% END 3RD MENU 4. IF = & »/

/% END SECOND MENU FOR LOOP n/
/% END 1. BUDGET AND EXPENSE IF LOOP FROM SECOND MENU »/ s

/

/" program module Job Order Informetion W/

m version 1.0 »/ '

m suthors: Richard N. Noodwan %/ !

m Micheel F Rall oy

/7" n/ ‘

m ‘ »/ ,

m »/ N
| /m Program last modified 20 Jarumry 1986 n/

/7" »/

/% This program was produced on an IBM PC using n/ ;
| /» DOS 3.1. Hritten with the C programming language, »/
i 7 utilizing the GrephiC utility softwere. % oS

/m w/ P

/% Displays the a Job Order, Job Orders n/ ’ Y

/% under a Cost Function, snd Job Orders under a Cost  #/ {

/% Class. »/ "

/" »/

/" Input/Output Files: None n/ ‘:

’~ »/ N

/% Modules Called: GETJOEMP, GETJOEMA, GETFJO, GETCJO  #/ )

V) n/

/% Called by: CCI u/ .

/» " )

. .

Local Variables: inp7 n/ ¢

/

if (inpll0] == 2) :

/%  mein mernu choose 3 W/

200 "2

1-."1-- 'b'\l\uvu - T AR I .-'_



I

),
)
)
D

RSO 1

1,

» A

A

clesarthescreent( )y

clscolor(14,3))
ritsborder();s
irpl0ol = * 0%y
do
clearkbd( )3
irp7l0] = * 0y
ourlocat(4,1);

colreprt("JOB ORDER INFORMATION “,14,3);
ourlocat(8,1);
colreprt(”l. Input Cost Function &

Find Job Orders",14,3);
ourlocat(10,1))
oolreprt(”2. Input Cost Class # Find

Job Orders”,14,3);
ourlocat(l4,1)s
colroprt("Selection: "»14,3))
curlocat(16,1);
colrcprt(®A blark line exits *,14,3))
eurlo'e.t( 14,45))

getint(1,1,1,1,2,8inp7,0,1,4)}
if (irp7t0) = * 0')

curlocat(15,1);

colreprt(”Is this correct?
"*5»14,3)s

curlocat(15,45);

i = ecoyesno(15,45,1))

if tinp7(0]) == * 0*)
i=1
/% END DO LOOP FOR MENU IF MENU 1 = 3 %/
while (1 1= 1)

201




ourlocat(14,45)s
Vs ] »/
if (irp7(0) == ' 0') breek)

clscolor({ FOREGRND ,BACKGRND )3
ourlocat(15,20);
colrprts(™ JOB ORDER INFORMATION ™ ,FOREGRND ,BACKGRND)j

pausel( )}

if (inp7l0] == 1)

for (33)

/% begin for statement w/
clearthescreent ))
clscolor(14,3);
riteborder( );
do

clearkbd( )3
ourlocat(6,1))

colreprt("INPUT THE COST FUNCTION NUMBER ";;4,3);
curlocat(10,1))

colreprit "Selection: ",14,3))
curlocat(16,1))

colrcprt(”A blank line exits ",14,3);
ourlocat(10,45))

getcstr(20,1,1,1,2,4cfno,0))

if (cfrolo] 8= * 0*)

ourlocat(12,1)
colrcprt(“Is this correct?”

»14,3))

202

o " o ~ - = 2 L ~ o P M
K ".‘.’. f < A d’»f " e _!( AR ‘,'_',('.",". . c..‘d's LRI P
ST 8at s

. 2 e o~ Gadt) Cha 2y

g w_w_¥ 1 - .-

N

RN R P
.



ourlocst(12,45))

i = ecoyesno(12,45,1))

if (cfrol0] s= * Q')
i=1

while (i = 1)

if (cfnol0] == * 0') breaks

hdr = ©* Cost Function Job Order Number
ot }

strepy(sslect; selfjo)s

strcat(sslect,"'")s

strcat(select,;cfno)ls

strcatiselect,"'")y

getfjolsaelect, hdr, curs))

/% end of or if loop = 1 for merw 2-2 ¥/
/%  end of employee menu for loop ¥/

if tinp7(0]) == 2)

for (33)
g /% begin for statement »/
cleesrthescreent )}
olscolor(14,3))
riteborder())
do
clea Kbd( ) |
ourlocet(6,1)}

colreprt(“INPUT THE COST CLASS MMBER ",14,3))
curlocat(10,1)s

colrcprt("Salection: *,14,3))

203

“p e mcm Mg L
o ~ < SRR SRR ' S R T T FRAN MRS RV RAFRY AN AP Pty
R ST T O D P AR N D NI R AL AN A R A9 SERRNS HVMRSL A Sork o i



)

L)

O

[ I 3Tt I AN S LT LTS N

.

curlocat(16,1);

colreprt(“A blank line exits
curlocat{10,45))
getestr(20,1,1,1,2,2¢c1n0,0);
if (elnolO] != * 0°)

curlocat(12,1)s

",14,3)3

colrcprt(“Is this correct? "

»14,3)s

curlocat(12,45)s

i = ecoyesno(12,45,1)

if telnol0) == * 9")
is ]y

while (i '= 1)

if (clnol0] == ' 0') break;

hdr = " Cost Class

strepy(select; selcjo);
strcat(select,”'"))
strcat(select,clno)y
strcatiselect,"'");
getfjolselect, hdr, curs)y
/% eond of or if loop = 1 for meru 2-2 ¥/

/%  end of employes menu for loop ¥/

/" end of for loop #/
/" end of if 32 employee »/
/% END FIRST MENU FOR LOOP %/

204

o
D)

Job Order

.)"‘J-".n‘u-.- N T ""-,*"._.- ';,J.-\ A B T ._\ N
3 hd

e W0y '+

W -



/% End Main Mena If Inp ®s 1 W/

JRBHHHHEIIHHHHEHHHHHHBHHEHHHEHEHHHEHHEHEEHHHHEHIOHHHEREHE/
Vs ] progras module UFI »/
; . s ] version 1.0 »/
: 7 suthors: Richard N. Noodwan »/
. /n Micheel F Rall »/
Vs ) »/
,. y
‘. /™ Y
; /m Progrem last modified 20 January 1966 »/
) ™~ »/
i: /% This program was produced on an IBM PC using n/
i /% DOS 3.1. Hritten with the C progremming language, »/
', /A utilizing the GraphiC utility softwars. »/
™ n/
/% Calls User Friendly Interface to allow the user to »/
) /% wmeke Adhoc queries, updates, and deletes. »/
t /m ) w
. X /% Irput/Output Files: None n/
: m »/
‘ /% Modules called: User Friendly Interface »/
; /» »/
. /% Called by: CCA »/
}.. /n »/
:': /% Local Variables: None »/
:f ZHBEHRHHHHHHHHHHHHHHHHHHHHHEHIHHIIHHHIIHBHEHEHEHRHEERNE /
if (irplo] == 2)
¢
'. clscolor(14,3)3
: i ® doscmd("ufi system/manager"))
: /% End Main Menu If Inp == 2 w/
D
S
:
G done:
'
" 205
)
\
¥

§
) Q ‘ et G Vs TL ST L R QY Gy 0 e S LN AN W 5 5N e e N N N
‘to"‘o"’c?’.t,“,t, n".n'. '“n"‘ﬂ?"i OaS O RO ) 0".' AN e TS G I ) Q.-\O'. y AN A AT A NN u"‘n A RS AV 'I. AT e Ta i i W o, ()




/% Close the budgst cursor ¥/

ocloss(cursi(l])s :
/% Fres the budget array ®/

for(is0; i < 503 i++) free(budgetiil)s

if (pflag) lprtff()y 4
setacmod( EIGHTY); - ;
border(BACKGRND )

elsoolor( FOREGRND ,BACKGRND ) s r

/% Log off from ORACLE %/

.
ologoflcursiol)s
(]
/% main end W/ '
curlocatil,ils ‘
colrprts( title, FOREGRND ,BACKGRND )3
return}
. 3
' 3
ritsborder() - K
I \
int x *)
nextline(2); ,
hx
colreprt( " 2222222222222 2222222222292 2272272 22T, "
14,3) y
» U
printf(® pv), ‘
for (x = 0) x <= 133 x++) -
colreprt(*? ?%,14,3)) b,
printf(™ n")y h
oolreprt(" 7727272227272 2277772772272,
14,3)s (]
X
{
L}
206 "
.F
-
¥

1

AN ACRANE LA R PR Y
!Lgl . W N k L‘}(‘L S T V¢ J A.fl.{&{}-{l ' ;'- _L..h L‘l‘:\;‘h‘ _A\.‘$A1-:~_A5_‘ .’A




-
"«

e oo
S i S

- o -
R 10

oy ¥

-

-
-

-

b

- -
- .

"
)

b

M
’

l'.
K

X 0 Y LA et A P A A N e U P A PR N
QOGO A O RS M U D T AN NN N N N . " TR,

naxtline(line)

int ¥v»
for (y = 0y y <s lines yes)

printf(” n")y

clearthescreent )

int 2»

for (2 &3 2 < 173 2¢¢)

clrmegl(z2,20,38))

writef(line)
char linel81])
/% Rritefile writes the ocutput of Oracle to a file called graf W/

FILE woutfile, %fopen()s
outfile = fopen("graf","a")

fprintfl(outfile,””s n";1line)s

fcloseloutfile)s

writefl(line)
char linel81])

/% Hritefilel writes the output of Oracle to a file called grafl w/

FILE doutfile, %fopen( )y

outfile = fopen("grafl","s"))

207

e G P N




forintfloutfile,"Xs n",line))
foloseloutfile)s

K writefb(line)
char linel8l)s
/" Neitefd writes the cutput of Orscle to & file celled bud %/

FILE soutfile, wfopen())

e e

outfile = fopen("bud”,"s" )
forintf(outfile,"’s n",line)s

;‘ foloseloutfile))

¥

y

R 2. PROJAC

Sinclude “colors.h”

N ®include "otype.h"

X Sinclude "filedeta.h”

: sinclude "intregs.h"

’ #include "stdio.h"

)

N /% Global Varisbles #/

' Scdefine BACKGRND BLUE  /» Background color ¥/

: Sdefine FOREGRND YELLOW /% Foreground color ¥/

a 8define FORTY O /" Code for forty column mode ¥/
y Sdefine EIGHTY 2 /% Code for eighty column wode %/
;

#

i #include “orcairp"

208

-

», '-“'\""'v'\

i w3 N SO R N ‘
':O"\O".O".O“.b"n!.-b .o".v "'.‘.‘.0‘ A OO AS 00 e U bt e c"!‘ v Gl -""

s P

Mg




mterisli{ls),

other(1S])

char 1inal(80], wbudget(100], xcalloc( s
int 1, 3 pgs pfleg, plines, lines, nlines)

nlines = 0y

setscmod( EIGHTY )3

clscolor( FOREGRND ;BACKGRND ) 3

border(BACKGRND )3

ourlocat(12,23)s

for(i20) §i < 50y i++) budgetii] = calloc(l,1)s

colrprts(”Do you want printed output (Y/N)?",FOREGRND ,BACKGRND )3
if (gatyssrnotl))

/n Initialize the print varisbles W/
pflag = 1y

for (=13 § <= 63 J+¢) lprtifl )y

for (3=13 § <= 13 3e¢) lprtchar(0, ' ')y
lpristrihdr)s

lprter()s

lprtlfl )

lprtlfi )y

alse pflag = 0)

plines = 0

clscolor({ FOREGRND ,BACKGRND )3
/% Process the ORACLE request %/
/% Open a cursor for the budget ¥/

it (oopentcursil),curs(0],-1,-1,-1,-1,-1))

errrpticurs(0],4)s

goto close)

210

Y4 P .a!'m S Ay

L T P --‘---;1



/% Retrieve the first record w»/
/WSELECT SUM(LABOR ) +SUM({MATERIAL )+SUM(OTHER)
FROM BUDGET MHERE COST_FUN_NO = »/
if (osql3l(oursll], select, -1) ||
odafin(oursil], 1, &clno, sizeof clno,
8y =15=15-15-1,~1,-1,-1) ||
odefin(ocurs(l]), 2, 8lshor, sizeof labor,
55 =15~15=1,-1,=1,~1,-1) ||
odefinlcurs(l], 3, tmaterial, sizeof material,
55 =1y-1~1s=1,-1,~1,~-1) ||
odefinloursil], 4, Sother, sizeof other, 5, -1,-1,-1,-1,-1,-1,~1) [}
ocsxsclcoursil]) ||

ofetchicurs(1]))

iflours[1110])==4)

ourlocat(12,30)s
colrprtsti "No Records Selected”,FOREGRND,BACKGRND))

goto close;

eolse

errrpticurs{0l,4))

goto close)

/% Retrieve the remmining records w/
lines = 2

heed(hdr )

while (cursl11(01l = 4)

nlines = 03

strepyt line, clno)y

211




/% Chaok for e full escreen W/
else if (linss ¢ nlines > 23)

. ourlocati 2¢,21))
colrprts("Press srw Key to continue or @ to quit”,

' FOREGRND , BACKGRND ) 5
\ getkey(2))y
1lines = 23

if (() == 'q’') (|| () == *'Q’')) goto dones

‘; clsocolor( FOREGRND ,BACKGRND )3
?, heed(hdr))
" /% Check for » full pege w/
)
: if (pflag 22 ((plines ¢ nlines) > 51))
]
t
plines = 0
K i = (80 - strlenthdr))/2)
: lprtéét )
' for (3m1) 3 <= 63 3o+) lprtlfl)s
for (3=1y § <= i) je¢) lprtcher(0, * ')
i
: lprtstrihde);
:' lprtort )
3
h lprtlét )y
lprtlft )y
§
‘s
[
s
[ /% Print the lines %/
[
¢ fori 3=03 3 < nlines) je¢¢)
L ]
"‘
b ourlocat!lines,10)
‘4
:. ocolrprtsibudget( } 1, FOREGRND ,BACKGRND )y
.
) if (pflag)
)
4
\ 213
»
1)

1
i
. o« PP L I P P L o P A T S S NP S
T Y 0 P e e T A S R A R 0 S




for (3=1) J <= 93 Jeo) lprtcher(O, * ')y

lprtstr(budgetl il
lprtor( ))
lprtlf()y

plinssesy

linss+sy

lines+e)
it (pflag)

lprtor( )y
lprtlé())
plines+sy

ofetchioursil])y

close:

ourlocatt 26,20

colrprist® Press a key to continue
FOREGRND ,BACKGRND ) »

pausel )y

done:

/m Close the budget cursor W/

oclose(oursil])) /# Frea the budgst srray %/

foriis0) { < 80} i+e) freeibudgetlil))
if (pflag) lprtffi)y

setsomod( EIGHTY )y

border(BACKGRND )3

clscolor( FOREGRND ,BACKGRND )y

214

NS Y \'E-.'t-.'.\‘ S, \"-_-‘:-‘._-;\-; R o
» - P LA, P NPT WO -

S Ay
.rf\c'\'

P W Wy

- . o -

L &L CLA

[y

'
\

[ XX

PN S

P P "y



program module gettotf
version 1.0
suthors: Richard N. Moodman
Micheel F Rall

Progrem last modified 11 December 1986

Purpose: Displays budget vs expense to date for
ocurrent fiscal year, by cost function.

P B I B B B B B A

¥

Other modules called: SELBFUN,SELEFUN,writet

¥

Called by: TOBUDEXP

¥ ¥

~
L

Files used: NONE
Files created: GRAF

Local varisbles: cfno,bud,ex®
1ine-80~-, #budget-100-, wocslloc( s
i 3> pg» pflag, plines;, lines, nlines)

I B I B A

;
N

gottotfiselect, hdr, curs)

char wselect,

*hdr)

/A HHHEHEHHHEHHHHHHHHHHHHEHHHHHHHHHHHHHEHHHHHHRHEHE/

n/
»/
»/
w
n/
n/
»/
»/
»/
»/
»/
n/
n/
n/
»/
n/
n/
®/
»/
n/
n/
n/
L 74
n/

»/




ERCICERUROR/

A G

[
1

] [ Wt - P A AN T e N i B e N S N S N B A T I A R I B S

W - VY U ey

short cursl }(32]y

char
ofnolS),
bud( 181,
opllsh

char 1inel80], #budget{1001, »calloc( )
int 1, 3, pg» pflag, gflag, plines, lines, nlines)

nlines = 03

setscmod( EIGHTY )3

clscolor( FOREGRND ,BACKGRND )3

border( BACKGRND )3

ourlocat(12,23)s

for(i=03 { < 503 {+¢) budget(i] = calloc(1l,1))

colrpris(”Do you want printed output (Y/N)7*,FOREGRND ,BACKGRND )3
if (getyesno(1))

/n Initialize the print varisbley %/
pflag = 13

for (J=13 § <= 63 Jeeo) lprtlf()s

for (§s1y) j <= 13 jee) lprichar(0, * ')
lprtstrihdr))

lprteri( )

lprtlf( )y

lprtlft )y

else pflag = 0}

plines = 0

ourlocat(14,23)

colrpris("Graph Output (Y/N)?",FOREGRND ,BACKGRND ))

216




PR e s

o

3

)
)
)
L)

/m Initislize the graph verisble »/
if (getyesno(1}) gflag = 13
olse gflag = 0

clscolor( FOREGRND ,BACKORND )3
/% Process the ORACLE recquest »/
/" Open a cursor for the budget %/

if (oopenicursi{ll,ours(0],-1,-1,-1,-1,-1))

errrpticurs(0),4);
goto close’

/n Retrieve the first record w/

/% SELECT COST_FUN_NO, SUM(LABOR)+SUM(MATERIAL )+SUM(QTHER),

FROM BUDGET GROUP BY COST_FUN_NO #/

if tosql3lcursi(l]), salect, -1) ||
odefin(oursil], 1, &cfno, sizeof cfno,
8y =1,~15~1,-1,-1,-1,-1) ||
odefinlourslll, 2, C.3, sizeof bud,
8 ~1,-1,-1,-1,-1,~1,-1) ||
ocaxscticurs(1]) ||

ofetchicurs(1]))

iflours{11(0]a=4)

curlocat({12,30))

colrprts(”No Records Salected",FOREGRND,BACKGRND );

goto closes

else

errrpticurs(0],4)s

goto closes

217

3

EANNEAR ARV ET. ISR

] L3 " N ) LR W) * ] "Iv "4y L % - - N, \‘- N‘ I'\N‘ u\'.." -.'.-.' L -‘V l.' ‘.“l"’h"v-
:‘0‘-\.0"' i‘.‘\‘.’lo o.' ohq~‘q L) > ~ ~ ,0“.. Kal) N [0S ~ o ) o Ohll o ! < ¢




/% Opan 8 cursor for the expense ¥/
/% SELECT COST_FUN_NO,SUM( LABOR )+SUM(MATERIAL )+SUM(OTHER)

FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM EXPENSE
AND COST_FUN_NO = :COST_FUN_NO GROUP BY COST_FUN_NO */
if (ocopentcursi2]l,cursl0],~1,-1,-1,-1,-1) (|
osql3(curs(2], sslefun, -1) |1
odefintoursl2], 1, scfno, sizeof efno,
8y =1,=1,-1,-1,=1,-1,-1) |}
odefin(curs(2], 2, 2exp, sizeof exp,
8y =1,-15=15-1,-1,-1,-1) ||
obndrvicursl21,":CFNO%,-1,8cfnos-1515~1,-1,-1,~1))

errrpticursf(0],4))

goto closes

/% Retrieve the remsining records %/
lines = 23

head(hdrls

while (oursl1llol != 4)

nlines = 03
strepy(line, cfnols
strcatt{line, bud)s

/% Retrieve the first address record »/
i (osxeclcursi2z]) ||

ofetehicurs{21))

iflcursl21(0)la=g)

else

arrrpticurs(0],4)s

goto closes

218




R g eyt

-
-
-
-
<
.
-
o
.
]
-
-
-
-
-
v
-
C)
J
Q
-
]
-
-

8
X
while (ocursi21(0] = 4)
-
g streatiline, " ")
. strcat(line, &)}
:, : if (stremp(line, " “) = Q)
'
:E free(budgetinlines])s
) J = strlen(line)s
: budgetinlines] = calloc(j+l,1)
»;‘ strepy(budgetinlines], line)s
: if (gflag == 1) writef(line);
nlines++)
[
;: ofatchicursl(2]))
0
b .
,
‘ /% Check for a very large entry #/
A if (nlines > 21)
§
;' clscolor( FOREGRND ,BACKGRND )3
! curlocat(12,24))
colrpris{ MIBHBEHLNUENtrY exceads 20 lines",
;’ FOREGRND »BACKGRND )3
: curlocat( 24,213
colrpris("Press any Key to continue or @ to quit“,
" FOREGRND ,BACKGRND )3
N gatkey(j)s
v if (1) == 'q') || (j == 'Q')) goto done}
’ clscolor( FOREGRND ,BACKGRND )
R lines = 23
# for (J=03 j < nliness j++) printf(" /s n",budgetljl),
;
219
)
.
;e

' O™ 3™ g PSS W ST NS L5y LN A T S Y 'y VLA A ‘\"-"".'.‘.“
-"- o".- 1 ..NN X o N ) ..l. ..I.O o o X o { p N ) \ LAY .~ J~-| ¥ o “w Y Y J




1 R T ORI T PREFT PR HRT R RN RO U P OGO U VO U A AR U T U PP T P RO SOY OO O Y

y 8 0

/% Check for a full screen »/

- w e

; else if (lines ¢ nlines > 23}

curlocat(24,21)3
colrprts("Press any key to continue or @ to quit®,

FOREGRND ,BACKGRND )3 -
getkey(2j)s

linas = 23

| if ((j == *'q') || (§ == 'Q’')) goto dones
clscolor( FOREGRND ,BACKGRND )3
head(hdr)s o

/% Check for a full page */

)]
if (pflag &2 ((plines ¢+ nlines) > 51)) .
plines = 03 S
i = (80 - strlenthdr))/2)
lprtffi )y . .;
for (3=1y j <= 63 jee+) lprtlf()s :‘
for (j=1s j <= i3 j++) lprtchar(0, ' ')y :
lprtstr(hdr); !
lprter()s -
lprtlf( )y :
lprtlf()s ~3

/% Print the lines w/

T

for(j=03 j < nlines) je¢+)

curlocat(lines,10)
colrprts(budget! 31, FOREGRND ,BACKGRND )3
if (pflag)

PRy

for (3=1y § <= 93 j++) lprtchar(0, ' ')y

220

At O X LAt



1 lprtstribudgetli j1)s
},‘ lprter( )y
K lprtlf( )y
: plines++y
N .
!
¥
i
‘k lines++}
!" -
b A lines++y
»
'y if (pflag)
Y
[}
]
lprter()s
z;'
¥
?' lprtlf()s
. plines++;
™
b
3
LY
. ofetch(cursil])y
9,

if (gflag == 1)

PR gu g

) i = execute2(”d: c¢ graf tripbar.exe");
‘s
" close:
b curlocat(26,20)3
X
)
colrprts(*® Press a key to continua ",
? 4 FOREGRND ,BACKGRND )3
;o. pause( )y
:'c
) done:
. .
1' /% Close the budget cursor ¥/
7 oclose(curs(l])s
/% Free the budget array %/
for(is0) 1 < 503 i++) free(budgetlil]))
'
N
# 221
!
i.'
b
ko
I ‘
&)
L]

C "y 21 AP e > LTS e
N OIS -l.. OO v e

L N T% e B
. o, %4 %0

).-. - '_-. .().- Jﬁ "p.‘.-\"ﬁ ,' e

"*'k "0 e ™ e '\'-"

M Ae AL NS A A LR




if (pflag) lprtffl)y
satscmod( EIGHTY )
border(BACKGRND )3

clscolor( FOREGRND ,BACKGRND )3

/7 program module gettote

/" version 1.0

/% suthors: Richard N. Noodman

™ Micheel F Rall

/%

7

/%

/% Program last modified 11 December 1986
/"

/% Purpose: Displays budget vs expense to dete for

current fiscal yeer, by cost class.

T ¥R

Other modules called: SELBCL,SELECL,writef

¥

¥

Called by: TOBUDEXP

Files used: NONE
Files created: GRAF

¥ ¥ ¥R

/% Local variables: clno,bud,ep

Vi i line-80-, *budget-100-, %calloc( )
/n i» 3, pg» pflag, plines;,; lines, nlines)
/»

/
n/
»/
n/
n/
n/
n/
n/
»/
»/
L 74
®/
»/
»/
»/
n/
»/
®/
»/
»/
n/
»/
»/
®/
»/

»/

/ IHHEHHHHHHHHHHEHHHHHHHHHHHHHHBHHHHHEHEHHHEHEHHHHHEHHHHEHEHE /

222




gettotolselect, hdr, curs)
char ¥sslect,

i shdr)

short ocursl )[321])

. char
0“(31:
N bud[151,
'
:: epllsls
|
b3
3 cher linel80), %budget(100]1, ®calloc()s
X int 1, j, pg» pflag, gflag, plines, lines, nlines;
ty
4
B
N
:z‘ nlines = 0y
)
setscmod( EIGHTY )
-
clscolor( FOREGRND ,BACKGRND )3
)
o border(BACKGRND )3
. curlocat(12,23)s
',:' . for(i%0) i < 503 i+¢+) budgetlii) = calloc(l,1)s
: colrprts(“Do you want printed output (Y/N)?",FOREGRND,BACKGRND )}
if (getyesno(l))
:. /% Initialize the print variables »/
:.! pflag = 13
M)
p" for (3=1) j <= 63 j++) lprtlf( )
o
for (j=13 3 <= 1y jee) lprtchart0, * ')y
Y lprtstr(hdr)s
A lprter();
' lprtlf( )y
[
lprtlf()s
L)
X
L)
X
:: else pflag = 0y
;‘ plines = 0)
b 223

| el

Frd

BT R A AR e R S e e N e R M s e v e

A A
-P...l'?.A“.A:




XN

5

)
950,50,

/n Initialize the greph varisble ¥/
ourlocet(14,23)s

colrprts(“Graph Output (Y/N)?",FOREGRND ,BACKGRND )
if tgetyesno(l)) gflag = 1)

else gflag = 0)

olscolort FOREGRND ,BACKGRND )3
/% Process the ORACLE request »/
/% Open a oursor for the budget W/
if toopentoursill,cursl0],~1,-1,-1,-1,-1))

errrpticurs{0l,6))

goto close)

/% Ratrieve the first record W/

/% SELECT COST_CL_NO, SUM(LABOR)+SUMIMATERIAL )+SUM(OTHER),

FROM BUDGET GROUP BY COST_CL_NO %/

if (osql3(curs(l], select, -1) 1]

odefinlours-1-, 1, 8clno, sizeof olno, 8, -1,-1,-1,-1,-1,-1,-1) {{

odefinicursil], 2, C.3, sizeof bud, 5, -1,-1,-1,-1,-1,~1,-1) |{

oexecloursl(l]) ||

ofetchicurs(l11]))

iflcurs(11101=24)

curlocat(12,30)

colrpris("No Records Selected",FOREGRND ,BACKGRND )3

goto closes

else

arrrpticurs(0},4)s

goto closes

224

T . ] \-"-‘f-. “e ) ‘\*\

AR 0¥ 5,

VR OGN AVRINATN, NI TR K M




P

/% Open a8 cursor for the expense %/

/7% SELECT COST_CL_NO,SUM( LABOR ) +SUM(MATERTAL )+SUM( OTHER )
FROM EXPENSE WHERE OT = (SELECT MAX(DT) FROM EXPENSE)
AND COST_CL_NO = :COST_CL_NO GROUP BY COST_CL_NO %/

it (oopenioursi2],cursi0l,-1,-1,-1,-1,-1) ||

osqllicursi2], selecl, -1) (|
odefintcursi2], 1, &clno, sizeof clno,
$s =1ls-1y-15~1-1,-1,-1) ||
odefin(oursi(2], 2, Sme, sizeof @p,
By =1,-1,-1,-1,-1,-1,-1) |!
obndrviours[21,%:CLNO",~1,8c1n0,~1,1,-1,-1,-1,-1))

errrpticurs(0],4))

goto close)

/% Retrieve the remsining records m/
lines = 2)

haad(hdr 1}

while (curslll{o] = &)

nlines = 03

strepy( line, clno)ly
streat(line, * "))
strcat(line, bud)y

strcat(line, * ")

/% Retrieve the first expense record #*/
if (oexscicursi(2]) |}

ofetchicursi2]))

iftoursl2]l0]==g)

else

LE ,Vn S AT LT R ».J\‘;- M '-‘;."‘\'.\. . .‘-’-‘-'Nf‘ '-.".\ Y N'x-”\;.\'.\;-\;.\- '\;.\’ \«\.-
» 39 3 » 3 - A~A . o

~ \:.\}\'.\‘ \"\';.;_‘.‘ RN

-,
.t




Ww_-— WY Ty -

orrrpticurs(0),4)s
goto closes

vhile (curs{21{0] s &)

stroat(line, ep) )
if (stromp(line, * "} s 0)

fres(budgetinlines])s

} = strien(line)
budgetinlines] = calloc( j+1,1)3
: stropy(budgetinlines), line))
if (gflag == 1) writefilire)

nlinsstey

ofetchiours{21))

/% Chack for a very large entry ¥/
if (nlires > 21)

clscolor( FOREGRND , BACKGRND ) 3

curlocat(12,24),

colrprts( "HHHHHHIINENtry exceeds 20 lines”,
FOREGRND , BACKGRND )3

ourlocat(24,21)

colrprts("Press any key to continue or @ to quit",
FOREGRND , BACKGRND )y

getkey(8j)s

if (() == 'q') || () == 'Q')) goto dones

clscolor{ FOREGRND ,BACKGRND )

lines = 23

for (§=203 j < nliness }++) printe(” /s n",budgetijln




/% Chack for a full screen W/
else if (lines ¢ nlines > 23)

ourlocet(24,21)s

oolrpris(“Press any key to contirue or @ to quit",
POREGAND , BACKORND ) 3

gotkeyt &)

lines = 2)

- n

if (() == 'q') || (J == ‘'Q’)) goto done
, clscolor({ FOREGRND ,BACKGRND )3
: head(hdr )}

/% Cheok for a full pege ¥/

K if (pfleg 48 ((plines ¢ nlines) > 51))

3 plines = 0y
{ = (80 - strlen(hdrii/ gy
y lprtsfi ),
;. for (j=1) § <= 63 3++) lprtlf( )y
h for (j=13 § <= 15 jee) lprtcher(Q, * °'Js
lprtstrihdr)
lprter( )
lprtlet )y
lprtlf()y

/% Print the lines %/

for( js03 j < nlines) jee)

ourlocat(lines,10)

ocolrprtsi{budget{ j 1,FOREGRND ,BACKGRND }}

oy,

it (pflag)

. 227

R T R A g N A N S O O P AP A SO NP




for (sl § <o 9} joe) lprtchar(O,
lprtstribudget(}]),
lprter( )y
lprtlif( )y
plinesees

linssee;

lines+ey
if (pflag)

lprtor( )y

lprtlft )y

plinsees;

if (gflag == 1)

i = exscutel!“d: lyonsé.exs","lyonsé” )

ofetohicursil])s

close:

ourlocat( 24,20))

colrpris(* Press 8 kay to continue
FOREGRND ,8ACKGRND )3

pousel )} -

done:

/% Close the budget cursor ¥/
oclose(curs(11)y

/%  Free the budget array %/

for(is0y i < 503 i++) freelbudgetliil)s
if (pfleg) lpriff( s

el e diindinsiinnionlnfindiidioniie

3
1
4
)

CNTATAN \..'\' .\-‘\..\..“-'.‘-.
» o -




seteomod( EIGNTY )y
bordar({ BACKGRND )
clscolor({ FOREGRND ,BACKORND )y

/5NN NN NN NN M NN NN/

/- progren module gettotfe n/
ol version 1.0 »/
' /7 suthers: Richerd N. NHoodman n/
4 ™ Micheel F Rell L
Vg ] n/
/7 n/
: /m n/
/™ Program last modified 11 December 1986 »/
‘ r “
/% Purpose: Displays budget vs mgpense to date for n/
/% ocurrent fiscel yeer, by cost functiornvoost class. n/
/n w/
/% Other modules ocalled: SELBCPCL,SELECFCL w/
/" n/
/% Called by: TOBUDEXP n/
/n w/
/n u/
/n Flles used: NONE w/
/% n/
V) w/
/% Local verisbles: ¢fno,clno,bud,ee »/
/n 1ine-80-, mbudget-100-, ®cealloct )y w/ .
e i» 3> Po» pflag, plines, lines, nliness n/
/n n/

/SRR HHHHHEHHHHHHHHHHHHHHHEHHHHHHHEHNHHHEHHHIHHHHHHHHEHHHH /

gettotfciselect, hdr, ocurs!

char %gslect,




sihdr 3
short cursl }I32])

ofrnol(S1,
clnol3],
bud(181],

oells]

} cher 1inel80), Wbudget{100), mcalloo( )y
int i, 3, po» Pflegs pPlines, lines, nlines)

nlines = 0y

setsomod( EIGHTY )

elscolor{ FOREGRND ,BACKGRND ) 3

border({ BACKGRND )3

ourloosat(12,23)s

for(is0y { < $0s i++) budgetli) = calloe(l,1);

colrpertsi "o you want printed output (Y/N})7?",FOREGRND ,BACKGRND )
if (getyesno(l))

/% Initialize the print variables w/
pflag = 1

for (j=l; j <= 63 jeo) lprtlfl),

for (jmsly § <m 1y 3+¢) lprtcher(O0, * ')
lprtstrihdr)s

lprter( )y

lprtlf( )y

lprtlf( )y

olse pfleg = 0y

plines = 03

clscolor( FOREGRND ,BACKGRND )

230

l'_'. "'\.' Il ﬁ’..u' ! l(&' i S R e O T T et Py '.",\'_'._\'_l.' RN



/% Process the ORACLE request ¥/
/% Open a cursor for the budget »/

it (ocopenicursill,curs(0),-1,-1,-1,-1,-1))

errrpticursi(0l,4))

goto closes

/% Retrieve the first record W/

/% SELECT COST_FUN_NO, COST_CL_NO, LABOR+MATERIAL+OTHER

FROM BUDGET WHERE LABOR != 0 OR MATERIAL != O OR OTHER != 0 »/

if (osql3loursil], select, -1} {|

odefin(curs-1-, 1, &cfno, sizeof cfno, 5, -1,-1,-1,-1,-1,-1,-1) {|
odefin(curs-1-, 2, &clno, sizeof clno, 5, -1,-1,-1,-1,-1,-1,-1) ||
odefin(curs-1-, 3, C.3, sizeof bud, 5, -1,-1,-1,~1,~-1,~-1,-1) {|

1

‘S E TS

N

osxscicurs{l1]) (|

ofetch(curs(1l]))

iflours[11l0]ss4)

ourlocat(12,30);

colrprts("No Records Selected",FOREGRND,BACKGRND )3

goto close;

else

errrpticurs(0]1,4))

goto closes

/% Open 8 cursor for the expense %/

/% SELECT COST_FUN_NO, COST_CL_NO, LABOR+MATERIAL+OTHER FROM EXPENSE

WHERE DT = (SELECT MAX(DT) FROM EXPENSE) AND

(LABOR !'= 0 OR MATERIAL != 0 OR OTHER != 0)

AND COST_FUN_NO = :CFNO AND COST_CL_NC = :CLNO #/

231




it (oopenioursi2],cursl0),-1,-1,-1,-1,-1) |!
osql3lcurs(2], selecfecl, -1) |1
odefin(curs(2], 1, scfno, sizeof cfno,

8y =1,-1,-1,-1,-1,~-1,-1) 1|

odefin(curs(2], 2, 2clno, sizeof clno,

§) ~1ly-1y-15-1,-1,-1,-1) ||

odefinlcursi2], 3, e, sizeof ep>

5y =15=1,-15~=1,-1,-1,-1) ||

obndrvicurse[2],”:CFNO",-1,8fn0s=1,15-15-1,~1,~1) ||
obndrvicurs(2),":CLN0",~-1,8cln0,~1,1,-1,-1,~1,-1))

errrpticurs(0]},6))
goto closes

/% Retrieve the remaining records #/
lines = 2,

head(hdr )3

while (curs(1](0] != 4)

nlines = 0y
strepy(line, cfno)y
streat(line, " "3
strecat(line, clno)s
strecat(line, " ")
streat(line, bud)y

strcat(line, " ")

/% Retrisve the first expensse record */

if (cexec(cursi2]) ||

ofetchicurs(2]))

ifleurs[21l0ls=4)

slse




errrpticurs(0]1,4)s

goto closes

while (curs(21{0]) = 4)

-

strcatiline, e&xp)}

" if (strcmpiline, ™ ") 1= 0)

. fres(budgetinlines1);
j = strlen(line)s
budgetinlines] = calloc( j+1,1)
strepy(budgetinlines), line)s

nlines+s)

v ofetchicurs(2])

/% Check for a very large entry ¥/
if (nlines > 21)

¥ clscolor( FOREGRND ,BACKGRND )3
curlocat(12,24))

colrprts( "BusHEBREENtry exceeds 20 lines",

Pl by =

FOREGRND ,BACKGRND ) 3

curlocat(24,21))

colrpris(“Press any Key to continue or Q to quit",
FOREGRND ,BACKGRND )5

getkey(2j)s

if (1) 2= 'q') || () == 'Q')) goto done)

T
‘-

clscolor( FOREGRND ,BACKGRND ) s
) lines = 2

for (jz0y j < nlines; j++) printf(" 7s n",;budget(jl)

233

"
-8 - PP PV LY L LR ) » [IPL PP e TP R AN Y LT LT T N e N
e A N St AR e e X e oo N N

NS, )

o,
-
o ¥

& WIS

o '(\4-' N )-\-’




/% Check for a full screen ¥/

alse if (lines + nlines > 23)

curlocat(264,21)3

colrpris("“Press any Key to continue or @ to quit",
FOREGRND ,BACKGRND )3

getkey(8j)s

lines = 2

if ((j == 'q') |1 (] == 'Q')) goto dones

clscolor( FOREGRND ,BACKGRND )3

head(hdr)s

/% Check for a full page %/

if (pflag &2 ((plines ¢+ nlines) > 51))

plines = 0

i = (80 - strlen(hdr))/2s

lprtff()s

for (j=13 J <= 63 j++) lprtlf()

for (j=ls j <= i3 j++4) lprtchar(Q, * ')y
lprtstr(hdr)s

lprtcer()s

lprtlf( )y

lprtlf( )

/% Print the lines »/

for( 3203 j < nliness j++)
curlocat(lines,10)s
colrprts(budget( j1,FOREGRND ,BACKGRND )3

if (pflag)

for (j=13 § <= 93 j++) lprtchar(0, * '3

234

. N " N AN A N

VST T e e s N TN N N

'R

LY Y

o

,\--.--”\‘. . 8" ';.\- " \-.
() A , €% ()

- ~ - »
W

AN



lprtstribudgetl j1)3
lprter( )
lprtlf( )y

plines++s

lines++s

lines++y

if (pflag)

lprtcr( )y
lprtlft )

plines+s;

ofetch(cursill])s

close:
curlocat(24,20);
colrpris(® Press a key to continue )

FOREGRND ,BACKGRND ) 3

pause( 13
done:

/% Close the budget cursor »/
ocloselcurs(1])}

/% Free the budget array %/

for(i203 i < 503 i+¢) free(budgetlil)
if (pflag) lprtffl)s

setscmod(EIGHTY )3

border(BACKGRND )}

clscolor( FOREGRND ;BACKGRND )3

/mmmmmmm/

235 g




program module getfjo
version 1.0
authors: Richard N. Woodman
Micheel F Rall

Program last modified 20 Jarnuary 1986

Purpose: GCiven cost function mumber, finds all
job ordar numbers under if.

Other modules called: SELFJO

Y I YT Y YT Y YT Y Y YR

Called by: JOINFO

NN
x

?

Files used: NONE

¥ X

: /% Local variables: c¢fno,clno;jono

: /% line-80-, *jobord-100-, *calloc( )}
”n i» §, pg» pflag, plines, lines, nlin‘;;
/%

getfjolselect, hdr, curs)
char *select,
*hdrs
short cursi 1[321;

/% BEGIN GETBUDGET ROUTINE »/
char
cfnol51,
clnols],

236

| - - » » - - - » - - ~ -'1 v v A4 y - L] - - - - , W LIP"SL] - w
Y '. -. "'\' ® |.l o."o\ X '( |. .0. "" .I'u‘o.la . ' he (3 ‘" '( ~

n/
®/
»/
n/
n/
»/
»/
L 74
n/
n/
n/
»/
»/
»/
»/
»/
®/
»/
»/
®/
»/
»/
»/

»/

M

W,

h
id

n')“’

N

¢

e e ]
o s



oo e pes By

- e

jonol51y

char linal(801, *jobord(1001, %calloc( )3
int i, j, pg» pflag, plines, lines, nlines)

nlines = 0

setscmod{ EIGHTY))

clscolor( FOREGRND ,BACKGRND )3

bordar(BACKGRND )3

curlocat(12,23);

for(i=03 i < 503 i++) jobordli] = calloci(l,l)s

colrprts{“Do you want printed output (Y/N)7?",FOREGRND ,BACKGRND )3
if (getyesno(l))

/% Initialize the print variables %/
pflag = 1

for (j=13 j <= 63 je++) lprtlft)y

for (j=1) j <= 13 j+¢) lprichar(0, ' '
lprtstrihdr)s

lprtert( )y

lprtlf()s

lprtlf()s

else pflag = 0y

plines = 0y

clscolor( FOREGRND ,BACKGRND )3
/% Process the ORACLE recuest »#/
/% Open a cursor for the jobord »*/

if (oopentcurs{ll,curs(0],-1,-1,-1,~1,-1))

errrpticurs{0),4))

goto close:

237

P I S T IR .(-!..fr., PR -! v-. T T T A e T Y, ..’-‘.-‘_.".-‘.....‘.....'.‘-.\'..
» )
9.9%% all s 8% U N .50 V9. Wy N % T N ) 0

T PN TR Fatt Man Wl Ty

-... TR R TR .’ ~ _'\_. ‘,\‘.\‘. N



N >
'!\‘.‘n'. C LA NS Y :‘l

/" Retrieve the first record »/

/%SELECT COST_FUN_NO, COST_CL_NO, JOB_ORD_NO
FROM JOB_ORD WNHERE COST_FUN_NO =

if tosql3(cursil], select, -1) ||

odafin(ocurs-1-, 1, Scfno,
odefintcurs-1-, 2, seclno,

odafin(curs-1-, 3, &jono,

ofetchicursil]))

iftocurs(11(0}==4)

curlocat(12,30);

colrprts(“No Records Selected",FOREGRND,BACKGRND )}

goto close)

olse

errrptiocurs(0],6)s

goto closes

/% Retrieve the remaining records ¥/

lines =z 23

headihdr)s

while (curs{11(0] = 4)

nlines = 03

strepy(line,
strcat(line,
strcat(line,
strcat(line,
strcat(line,

strcat(line,

cfrno)y
]
cfnoly
(1] ")'
clno)s

LB 1Y

omec(curs(1)? ||

b I

sizeof cfno, 5, -1,-1,-1,-1,-1,-1,-1) ||
sizeof clno, 5, -1,-1,-1,-1,-1,-1,-1) ||
sizeof jorwo, S, -1,-1,-1,-1,-1,~1,-1) {|

238

- '? 1"' —"f"*.f.v'.'-f‘f.f:u'_'-"'-'v"‘f.J'"--'- ..{-{:‘_-‘.-._-._.’-‘r:
o WS, 0 A Rz e o X 3 .

'»

I Y e
\ . R X A ol »!

-
La

-

)



.' l“ l. !,

strcat(line, jono)s

if (stromp(line, * *) t= 0)

freel jobordinlines])

} = strlen(line)y
Jobordinlines] = callocl j+1,1)
strepy( jobordinlinesl, line))

nlines+e)

/% Check for a very large entry »/
if (nlines > 21)

clscolor( FOREGRND ,BACKGRND )3

curlocat(12,24))

colrpris("BHHBHHEOENtry exceeds 20 lines”,
FOREGRND ,BACKGRND ) s

curlocat(24,21)s

colrpris("Press any key to continue or @ to quit",
FOREGRND ,BACKGRND )

gatkey(83)s

if ((3 2= 'q") || (7 =3 'Q*)) goto done)

clscolor( FOREGRND ,BACKGRND )3

lines = 2

for (3=03 j < nliness j++) printf(" 73 n",jobordlj1)

/% Check for a full screen */

else if (lines + nlines > 23)

curlocat(24,21))
colrpris("Prass any Key to continue or @ to quit",
FOREGRND ,BACKGRND )3

getkey(&j)s

239

A T g T O R A
N A - 1. o« - - .

- -

Q

- -

-y

B s B o

>

BT W _E_¥

s



lines = 2y

if ({) == 'q’') || t] == 'Q')) goto done)}
clscolor( FOREGRND ,BACKGRND )3
heedthdr)s

/% Check for a full page #/
if (pflag &2 ((plines ¢+ nlines) > 51))

plines = 0;

i = (80 - strlenthdr)}/2s

lprtff()s

for (3=13 J <= &) jee) lprtlf( )

for (§=13 3 <= i3 je+) lprtchar(0, ' ')
lprtstrihdr)y

lprter( )y

lprtlf( )y

lprtlf( )y

/% Print the lines w»/ -

for( =03 3} < nliness j++)

curlocat(lines,10))
colrprts( jobordl j1,FOREGRND ,BACKGRND )3
if (pflag)

for (321 J <= 93 je+) lprtchar(o, ' ')
lprtstr( jobord( 1)

lprteort )y

lprtlf( )y

plines++)

lines++y

240

P T A T oL L T o T O T T T S IR Y Yy
v \':'.':\'f.'\i\':\'_ii\':\‘_&'C\‘:\"n':\':&'_h‘:mfs \Mﬁ.’f&‘:ﬂf}fp&.



PRy

lines++)
it (pflag)

lprter()s
lprtlf( )y

plines++y

ofetchicursill)s

close:

curlocat(24,20)

colrprts(*™ Press a key to continue "y

FOREGRND »BACKGRND )3

pause( )3
done:

/% Close the jobord cursor %/
oclose(curs(l]); /7* Free the jobord srray ¥/
for(iz0s i < 505 i++) freel jobordlil)s

if (pflag) lprtffl);

setscmod( EIGHTY )3

border(BACKGRND )3

clscolor( FOREGRND ,BACKGRND )}

/IHHHHHBHBHHEHHBHHHHHBHHHHHHHHEHHHEHHBHEOHHHHHHHHHHHBHEHEHE /

/%
Vg
/%
/%
/»

/%

A (TR AR SN

program module getcjo
version 1.0
suthors: Richard N. Woodman
Michael F Rall

241

R T Ty e i

®/
»/
»/
»/
*/

»/

g s
Oy

PR L R I I N
f._J_\.J\(‘.: N .v ,. -f'\- A )

-q_:".\_.\); '\.’\.‘_\
> .




™~ u/
™ Progrem last modified 20 Jerwmry 1966 w/

Ve u/
/" Purpose: Displays job order rumbers when given e n/
/% cost class mumber. »/
/n n/
/% Other mocdules called: SELCJO 74
/7 n/
/% Called by: JOINFO n/
™ n/
/" »/
/% Files used: NONE »/
/% »/
/n n/
/% Local variables: afno,clno, joro n/
/n lire-80-, ®*jobord-100~, %calloc( )y u/
/% i» J» pg> pflag, plines, lines, nlines) »/
/n n/

getcjolselect, hdr, curs)
char %select,
#hdr)
short curs{ 1{32]

/n  BEGIN GETBUDGET ROUTINE #/
char
. cfnolB],
clnol5],
jonol5 1y

char linel80], *jobordl(100], *calloc( }s

int i, 3, pgs pflag, plines, lines, nlines)

nlines = 0

AT R R R R R A R R NS
"ou. u_o Ot XN f~ "V ..-’"-.\. . oDy A AP AT AN



setsomod( EIQHTY )3
cls00lor{ FOREGRND ,BACKGRND ) 3
border( BACKGRND ) s

' -

ourlocet(12,23),

=3

foriieg) { < 503 iee) jobordli] = calloc(l,1)y

P
Tt e

colrprts( 0o you want printed cutput (Y/N)?",FOREGRND ,BACKGRND )}

5 if (gatyssnoll))
‘l
5
[}
»
/m Initislize the print verisbles #/

Al
* pflag = 13
N for (Jsl) j <= 6) jee) lprtlét )y
" for (§sly § <= 13 j+¢) lprtcher(0, ' ')
n
:i lprtstrihdr))
)
b lprter( )
| lprtlé( )y
N lprtlél )y
%
-'
Y

else pflag = 0)
K plines = 04
"
" c1scolor( FOREGRND ,BACKGRND )y
1)
X /% Process the ORACLE request */

/% Open 8 cursor for the jobord ¥/
¢
'f if (oopenicurs(l],curs{0],-1,-1,~1,-1,-1))
b srrrpticurs(0],4))
v goto closes
’
1)
‘|
'0
.: /% Retrieve the first record ¥/
i /%SELECT COST_FUN_NO, COST_CL_NO, JOB_ORD_NO
¥
' FROM JOB_ORD WHERE COST_CL_NO = %/

if (osql3icursil], select, -1) !
D
‘. ’ od.fin(eurs-l-. 1, &cfm. sizeof cfno, 5, ‘1;‘1;'1.'1,‘1;‘1"1' (R
¢

odefintcurs-1-, 2, &clno, sizeof clno, 5, -1,-1,-1,-1,-1,-1,-1) ||
¥
o 243
[}
[,
b
",
[)
¢ .

a . . A a S et AN L SO S S R SV S AT Tl T W e AR Ty LR Nl W S v".-_'.-“, L R

::3\"\' 'l adl) -'~ e, 5 J.l N\ J M .J.- o, . 7 -~ a2 a X0 20 4 ’




odefintocurs-1-, 3, &jono, sizeof jono, 5, -1,-1,-1,-1,-1,-1,-1) ||
osxwcioursil1]) (|

ofetchicurs(li]))
iflours(11{0]sag)

ocurlocet(12,30)3 )
colrpris(“No Records Selected™,FOREGRND ,BACKGRND )3

goto closes
else

errrpticurs(0],6))

goto closes

/» Retrieve the remmining records %/
lines = 2
headlhdr);s

while (curs(1](0] t= 4)

nlines = 03
' strepy(line; clno))
strcat(line, * ")

strcat(line, cfno)l;

strcat(line, " ")y
' streatiline, clno))

strcat(line, " ")

strcat(line, jono)s

if (stremp(line, " *) = 0)

free! jobordinlines )
j = strleniline)s

jobordinlines] = calloct j+1,1))

244



; strepy( jobordinlinesl, line))

o nlinesesy

-

/% Check for a very large entry %/

-,

if (nlines > 21)

- e A

) clsocolor( FOREGRND , BACKGRND )3
ocurlocat(12,24)
¥ colrpris( "mHHHEHHEENtry excesds 20 lines™,
FOREGRND , BACKGRND )3
9 ourlocat(24,21)

colrprts("Press any key to continue or @ to quit™,

' FOREGRND ,BACKGRND ) 5

" getkeyt2))s
0 if ((jJ == 'q") [| (j == 'Q')) goto done}
clscolor( FOREGRND ,BACKGRND )3

.: lines » 2

’ for (3303 j < nlines) 3++) printf(* %s n",3jobordl 3113
" /% Check for a full screen #*/

> else if (lines ¢+ nlines > 23)

E curlocat(24,21))

L colrpris(“Press any key to continue or @ to quit®,
3 FOREGRND ,BACKGRNO ) 3

" getkey(23))

i lines = 2%

U if (13 == 'q') {| (3 == 'Q')) goto done)
: clscolor( FOREGRND ,BACKGRND ) 3

.“ head(hdr )}

D)

3

/% Check for a full page %/

:

X 245

)

'

c s -mem - , - B R L Ly L P e R e L U L P U DL AL L L T U R S TP T U S T ST I T I
B I A e R st N e e e S e e 2



i€ (pflag &2 ((plines ¢ nlines) > 51))

plines = 03

i = (80 - strlen(hdr))/2;

lprtfé( )y

for (3sl) J <= 65 jee) lprtlf( )

for (3=l) § <= iy j++) lprtcher(0, * *)y
lprtstr(hdr)s

lprtert )

lprtlft )y

lprtlf( )y

/% Print the lines »/

for(j=03 j < nlines; j++)

ocurlocat(lines,10)s
colrprts( jobordl 1, FOREGRND ,BACKGRND )3
it (pflag)

for (3=1; j <= 93 je+) lprtchar(0, ' ')y
lprtstr( jobordl 311

lprtert )

lprtlf( ),

plines++y

lines+ss

lines++y

if (pflag)

lprtor( )y
lprtlf( )y

plines++y

246

N - L% oy T .-- AN A R | '."n'\' ._',~
~?““ e S . y Y

% 2 > V.

e R

- PR « S
el K % \'.;_' R T USRI Yol Tl Y \“-\.‘ ."-.‘...‘.¥." ." .“L' IR |"-\" \"kl‘ - -l-' NS



/%
/%

/"
Vs i
/n
4 ]

Called by: INDVDISP

Files used: NONE

Local varisbles: cfno,clno,bud,ex@
line-80-, Mbudget-100~-, ¥calloc( )

is 35 pg> pflag, plines, lines, nliness

®/

n/

n/

»/

»/

/

t 74

»/

»/

®/

»/

/HHHBHHEBHHIHIHHHHHEHHHHHEHHHEHEHEHHHEHEHEHHHBHHHHEHHHHHHBHEE /

gethour(select, hdr, curs)

char ¥select,
*hdry
short curs( 1321

char
efrno(5),
elno(5),
bud(30),

exp(30);s

char 1ine(80), *budget(100), %*calloc( )

int i, 3, pg» pflag, plines, lines, nliness

nlines = 0

setscmod( EIGHTY )
clscolor( FOREGRND ,BACKGRND )3
border(BACKGRND )

curlocat(12,231s

forti=0y i < 503 i++) budgetli] = calloec(l,1)s

colrprts(”Do you want printed output (Y/N)?",FOREGRND,BACKGRND )}

248

T P . ~:‘.r_'.-,‘.:'.-
B m 8

A A AP T TN e N 24

ff"ll!‘

1 % 8

L9 ] ""- s

l,‘f_

Y LA

‘t"‘l'll

2y v ¥
i

»

ety Nl

e

I A A

. - v
- 'l{"‘ -n. '.’ 4 5

L J
x‘, 7

~f



if (gatyesno(l))

/% Initialize the print variables »/

pflag = 1)

for (j=13 j <= 63 j++) lprtlf()s d
for (3213 j <= 13 j+¢+) lprtchar(0, ' ')

1prtstrihdr); )
lprter()s

lprtlf()s

lortlf( )y

else pflag = 03 y

plines = 03

clscolor({ FOREGRND ,BACKGRND )3
/% Process the ORACLE request »/
/% Open a cursor for tha budget %/

if (oopen(cursl(l),curs(0],-1,-1,-1,~1,-1)) : !

arcrpt(curs{0],q)y

goto closes

/% Retrieve the first record %/
/% SELECT COST_FUN_NO, COST_CL_NO, HOURS

FROM BUDGET »/

if (osql3icursi(l]), select, -1) |}

odefinlcurs-1-, 1, &cfno, sizeof cfno, 5, -1,~1,-1,-1,-1,-1,-1) 11

odefin(curs-1-, 2, &clno, sizeof clno,5, ~1,-1,-1,-1,-1,-1,-1) ||

odefin(curs-1-, 3, C.3, sizeof bud, 5, -1,-1,~1,-1,-1,-1,-1) |l
ocexec(curs(1]) (|

ofetchicurs(1])) )

iftcurs(1]l(0l1==4)

249

«
... R - BT T P R I N L N e R I PR vy JOL I Il L ) T T U o e e P U T I IRl
A " ._-f~ o, J‘,\' ~J‘ iy ._.-__f,.\’r‘f. {'.,'4"-4' - "\."\. Tl ol s ,r .r .r «l' .r v, -(', ey & B . -t )



Ko K

LK 0 AP I 4 < \l LI OR) & “ . S 3 . » (3 L) M Y s M [N ‘ > . . * ) A + 0 T 0 ». L7 a -

curlocat(12,30)s
colrpris(“No Records Selected",;FOREGRND,BACKGRND )}

goto closes
else

errrpticurs(0),4))

goto closes

/% Open a cursor for the expense %/
/%  SELECT COST_FUN_NO, COST_CL_NO, HOURS
FROM EXPENSE WHERE DT = (SELECT MAX{DT) FROM EXPENSE} AND
COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO »*/
if (oopenicursl2]),cursi0],-1,-1,-1,-1,-1) ||
osal3(curs(2], selehour, -13 (1
odefin(cursl(2], 1, &cfno, sizeof cfro,
Sy =1,-1y-1,-1,~1,-1,-1) (|
odefinlcursl{2], 2, 2clno, sizeof clno,
5, =1,-1,-1,-1,-1,-1,-1) ||
odefintcurs(2], 3, &axp, sizeof exp, !
55 <1,-15-1,-1,-1,~-1,~1) {I|
obndrvicursl2],":CFNO",~1,8cfno,~-1,1,-1,-1,-1,-1) ||

obndrvicurs{21,":CLNO",-1,8clnos=1515-1,-1,-15-1))

arrrpticurs(0],4)}

goto closes

/% Retrieve the remaining records %/
lines = 23
head(hdr)s

while (cursi{ll{o] 'z 4)

nlines = 03

250

',' . .J{';f - o -'\- AT -'..-.‘ A ‘-_.-A’_ T ot u"';'..-*-.. .".‘.._ ot .'_‘-'_ AR . A * . .‘.‘-._‘~-.\'.\..‘! '\..n..'-..\‘.\J\"'“ “ \



stropy(line, cfno)y
strcat(line, " "2
strcatiline, clno)y
strcat(line, " ")

strcat(line, bud);

/% Retrieve the first address record »/
if (oexeclicursl(2]1) ||

ofetchicursi2]))

iftcursl21l0])z=4) 3

else

errrpticurs(01,4);

goto closes

while (cursl21{0] !s &)

strcat(line, * ")
strcat(line, exp)}

if (stremp(line, " ") 'z Q)

freetbudgetinlines1)

j = strlen(line);
budgetinlines] = calloc(j+l,1)s
strepy(budgetinlines], line))

nlines++y

ofetchicurs(2])s

/% Check for a very large entry »/

if (nlines > 21)

251




clscolor( FOREGRND ,BACKGRND )3

curlocat(12,24)3
. colrpris("menssssaEntry exceeds 20 lines",

FOREGRND ,BACKGRND )3

curlocat(24,21)3

colrprts("Press any key to continue or @ to quit",
FOREGRND ,BACKGRND )3

getkey(2j)s

if ((3 == 'q') || (j a= 'Q')) goto done}

_ clscolor( FOREGRND ;BACKGRND ) 3
lines = 23

for (ja30s 3 < nliness j++) printf(" Zs n",budgetljl);

/% Chack for a full screen %/

olse if (lines + nlines > 23)

curlocat(24,21))

colrprts("Press any key to continue or @ to quit",
FOREGRND ,BACKGRND ) 3

gatkey(2j)s

lines = 23

if ((3 == 'q') |1 (j == 'Q')) goto done}

clscolor( FOREGRND ,BACKGRND )3

head(hdr )

; /% Check for a full page */

if (pflag 2% ((plines + nlines) > 51))

plines = 0y
i = (80 ~ strlen(hdr))/2y

lprtffl ),

for (j=1) J <= 63 j+4) lprtlf()s

252

- PR L R e T e T e T '.":}‘
T I S T s N S



for (j=1y j <= i3 j¢e¢) lprichar(0, ' ')}
lprtstrihdr)s

lprter()s

lprtlf()y

lprtlf()s

/% Print the lines »/

fort 3303 j < nlines; j++¢)

curlocat(lines,10);
colrprts(budgetl j ], FOREGRND ,BACKGRND ) 3
if (pflag)

for (3213 j <= 93 j++) lprtchar(0, * ')
lprtstribudgetl jl)s

lprter( )y

lprtlf( ),

plines++s

lines++;

lines++)

if (pflag)

lprter()s
lprtlfi )y

plines++s -

ofetchicursill]);

close:
curlocat(26,20);

colrprts(" Press a key to continue “y

253

. AT AL .f 'f{f p® -* ‘. ‘f -'. -# I‘..- ) ". . "“... - e -ah'.."""'..-.. fo e -..'-'_ *-. -.,,"'..'1"-.. -..\._" ‘\.'-‘.‘.'J.‘.‘-'J-\"\." ‘--‘-‘;'.‘f\'.\l ‘
- .‘ L 8! (3 ol ) o ol " & R Sy » .

XAl



|

FOREGRND ,BACKGRND )3

pause( )}

done:

/% Close the budget cursor ¥/
ocloselcurs(l])s

/% Free the budget array %/

for{iz0s i < 50 i++) free(budgetlil)y
if (pflag) lprtff()s
setscmod(EIGHTY )y

border(BACKGRND )3

clscolor( FOREGRND ,BACKGRND ))

/IHEHHHHHHEHRHEHEHHHHHEHHHHHEHEHEHHEHEEHHHEUHHHEHEHEHEHEHH: /

/n
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
7%
/n
/%
/%

/%

aTa T N

2N

program module getlab t 74
version 1.0 L 74

authors: Richard N. Hoodman »/
Michael F Rall */

»/

»/

»/

Program last modified 20 January 1986 »/
»/

Purpose: Displays budget vs expense by cost function »/

cost class for labor to date.
Other modules called: SELLAB, SELELAB

Called by: INDVDISP

254

e e T AT AT A A T T
. . » A i N - »

»/

»/

»/

®/

*/

»/

»/

T WLt

e -
(NS

.

et
> N o

Al




/% Files used: NONE »/
/% n/
/7 »/
/%  Local varisbles: cfno,clno,bud,exp »/
/= line-80-, *budget-100-, ¥calloc()s »/
/% i» j» pg> pflags plines: lines, nliness »/
/% */
JBHHEHRHHHHHEHHHHHHHHHHEHEHHHHHEHHHHHEHIHERHHHHEOHEOHHEENHGE

getlabl(select, hdr, curs)
char xselect,
¥*hdrs
short curs()(32)3

char
cfno(5),

h elno(5),

bud(20),

op(20))

char line(80), *budget(100), %calloc()s

int i, j, pg» pflag, plines, lines, nlines:

nlines = 0y

satscmod(EIGHTY )
clscolor( FOREGRND ,BACKGRND )3
border(BACKGRND )3

curlocat(12,23)s

———

for(iz0) i < 503 i++) budgetlil] = calloc(1,1)s

colrprts("Do you want printed output (Y/N'7“,FOREGRND,BACKGRND )3

if (getyesnol(l))

‘ /% Initialize the print varisbles »/

255

Im-{ -’-’-'v.. "i‘* PRI -":'-‘."N(‘.



e ey -

e xa A A

- e e

IR

AR SE KR AN NPT TR C L RN E VR WA ST UL WO AW R M RN IR U N IRy

pflag = 1

for (j=13 j <= 63 je+) lprtlf( )y

for (jaly j <= 13 j++) lprtchar(0, ' ')y
lprtstrihdr)y

lprtert )s

lprtlf( )y

lprtlf( )y

else pflag = 03

plines = 03

clscolor( FOREGRND ;BACKGRND )3
/% Process the ORACLE request »/
/% Open a cursor for the budget »/

if (oopenicursill,cursi0l,-1,-1,-1,-1,-1))

errrpticurs(0],4);3

goto close’

/% Retrieve the first record %/
/% SELECT COST_FUN_NO, COST_CL_NO, LABOR
FROM BUDGET */

if (osql3(cursll], select, -1} !|

LA

1

odefintcurs-1-, 1, gfno, sizeof cfno, 5, ~1,-1,-1,~1,-1,-1,-1) ||
odefinlcurs-1-, 2, %lno, sizeof clno, 5, -1,-1,-1,-1,-1,-1,-1) i

odefin(curs-1-, 3, C.3, sizeof bud, 5, -1,-1,-1,-1,~1,-1,-1) ||

P AR

3
-«

P L XX

& ¥

.
M t.u‘. ‘.‘.a'.

oexsclicursil]) []

ofetchicurs{l]))

iflcursl1]{0]=24)

curlocat(12,30);

colrprts(”No Records Selected",FOREGRND,BACKGRND 1}

goto closes

256

A T T T T g Vg T AT, Vi Ve VST PV A SO

AR S TP

._{.LMAAA




else

errrpticursi(0],6)s

goto closes

/% Open a cursor for the expense %/
/%  SELECT COST_FUN_NO, COST_CL_NO, LABOR
FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM EXPENSE) AND
COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO */
if (oopenicursi2],curs(0],-1,~1,-1,-1,~-1) ||
osql3(curs{2], selelab, -1) ||
odefinlcurs(2], 1, &cfno, sizeof cfno,
5, =1y-1,-1,-1,-1,-1,-1) |!
odefin(curs(2], 2, 2clno, sizeof clno,
5y =1,-15-1,-1,-1,-1,-1) ||
odefinlcursi2l, 3, texp, sizeof exp,
5y =15-1,-15~1,-1,-1,-1) ||
obndrvicurs(21,":CFNO",~1,2cfno,-1,1,~1,-1,~1,-1) ||
obndrvicurs{21],":CLNO",-1,8clnos=-1,1,~15-1,-1,-11})

errrpticurs(01,4);

goto closes

/% Retrieve the remaining records %/
lines = 23
head(hdr )}

while (curs(11(0] '= &)

nlines = 0y
strepylline, cfno)y
strcat(line, " ")

strcat(line, clnoly

257

v .'- _-' "- .'- \‘- .‘v _.! ..' .-- AR VT N A P T Wi _’- _'t.*v \ - \ \‘r'-' « r.~ . ‘ - I f..f\(\(* \ \



T

~

Wy §

>

el

\d

colrpris( “mususnauEntry exceeds 20 lines",
FOREGRND ,BACKGRND )3

ourlocat(24,21)3

colrpris("Press any key to continue or Q to quit”,
FOREGRND , BACKGRND )3 .

getkey(2j)s

if ((j == 'q') || (] == 'Q')) goto dones

clscolor( FOREGRND ,BACKGRND ) 3

lines = 2

for (3=03 j < nliness 3++) printf(" /s n",budget{jl)s

/7% Chack for a full screen %/

alse if (lines ¢+ nlines > 23)

curlocat(24,21))

colrprts("Press any key to continue or @ to quit",
FOREGRND ,BACKGRND ) 3

getkey(2j)y

lines = 2

if ((3 == 'q*) {] (j == 'Q'}) goto done)

clscolor( FOREGRND ,BACKGRND )3

head(hdr )

/% Check for a full page %/

if (pflag %2& ((plines ¢+ nlines) > 51))

plines = 03

i 2 (80 - strlenthdr)is/2y

lprtff( )y

for (3=13 J <= 63 j++) lprtlf( )

for (jzly j <= iy j++) lprtchar(0, ' ')
lprtstrihdr)s

lprtert )y

259

cmtrt P D IR A SRR TN LI T T I Jhe R LR T RV RY R B AT AL Py
G R GO T G T o VA o ST A A I f 0 S AW S Al

v¢~'|{

-

LI

PATICRN ‘-~"f"f L)

~



lprtlft )y
1petlfl )y

/% Print the lines %/

for(j=203 j < nliness j++)

ocurlocat(lines,10);
colrprisi{budgetl j 1, FOREGRND ,BACKGRND )3
if (pflag)

for (j=13 j <= 93 j++) lprichar(0, ' ')y
lprtstribudgetijl))

lprter()y

lprtlft)s

plinese++)

linese++)

linesee)

if (pflag)
lprtcri )3
lprtlf( )y

plines++y

ofetchicursi(l1]);

close:

curlocat(24,20)s

colrpris(® Press a key to continue “y
FOREGRND ,BACKGRND )3
pausel )}
done:
260

R L R G o R L R T O R U TN S
T T A T T T A A A T S WA



/% Close the budget cursor ¥/
oclose(cursil])s

/% Frea the budget array »/

for(iz0) i < 503 i++) free(budgetlil)
if (pflag) lprtff( ),

setscmod( EIGHTY )

border(BACKGRND )3

clscolor{ FOREGRND ,BACKGRND ) 3

ZHBHEBHEBHHHHEHHHHHHBHHBHHBHHEHHEHHEHHEHHBHHHEHEHHBHHHEHHEEE /

/%

/7%

3

/R
/%
/7%
/%
/%
/%
/7%
/"
Vé ]
/%
/%
/%
/n

/%

J 140 ‘., ., »”

program module getmat
version 1.0
authors: Richard N. Woodman
Michsel F Rall

Program last modified 20 January 1986

Purpose: Displays budget vs expense by cost function

cost class for material to date.

Other modules called: SELMAT, SELEMAT

Called by: INDVDISP

Files used: NONE

Local variables: cfno,clno,bud,exp

1ine-80-, »budget-100-, %calloc())

261

»/
»/
»/
»/
»/
»/
»/
»/

»/

»/
»/
»/
*/
*/
»/
*/
»/
»/
»/
»/

»/

. . . R R R R I I S N S Us Ve N S A D S P N IR LI
A o R R o T L R P,

N e N T

-,

<

l-‘ ‘l\ ~

o

":"'-‘4

4 &

S\

5

24

»_s

Tt T

.
-

[N (,", .fl"'.' B

5 oyt
]

AP,

a®

T
oL -

A e PP

S

NN

LN



(X E AR AT eI ST WU PUR A AR AN AN AN RN AN AL AT WA UN UYWAY O O ORI AR AR RN R A YN Uy : g%

Vs ] ir» §» pg> pflag, plines, lines, nliness »/
Ve »/

ZHBHHBHHBHHHHHHHHHHEHHBHHBHHEHHEHHEHHHEHHEHEHHHEHHHHHEHEBHE /

getmat(select, hdr, curs) '
char *select,
¥hdry
short cursl 1[321s

char
cfrol51,
elnol5],
budt 201,

epl20]s

char linel801, *budget{100], *calloc( )}

int i, j, pg> pflag, plines, lines, nlines:s

nlines = 03

setscmod( EIGHTY )3

clscolor{ FOREGRND ,BACKGRND )3

border(BACKGRND 13

curlocat(12,23))

for(i=03 i < 503 i++) budgetli] = calloc(1,1)s

colrprts("Do you want printed output {Y/N)?*,FOREGRND,BACKGRND )}

if (getyssnoll))

s Initialize the print variables %/
pflag = 13

for (3213 J <= 63 je++) lprtlf()y

for (3213 j <= 1) j+¢) lprichar(0, ' *)y
lprtstrihdr))

lprtcr( )y

lprtlfl s

262 ;




lprtlf( )y

else pflag = 03

plines = 0y

clscolor( FOREGRND ,BACKGRND )3
/% Process the ORACLE request #/
/% Open a cursor for the budget %/

if (oopenicursi{ll,cursli0],-1,-1,-1,-1,-1))

errrpticurs(01,4))

goto closes

/% Retrieve the first record ¥/
/% SELECT COST_FUN_NO, COST_CL_NO, MATERIAL
FROM BUDGET »/

if (osql3lcursil], select, -1) II

odefinlcurs-1-, 1, 8cfno, sizeof cfno, 5, -1,-1,-1,-1,~1,-1,-1) (I

odefin(curs-1-, 2, &clno, sizeof clno, 5, -1,-1,-1,-1,~1,-1,-1) ||

odefin(curs{l], 3, C.3, sizeof bud, 5, -1,-1,~1,-1,~1,-1,-1) ||
cexecl(cursil]) ||

ofatchicurs{l11))

iflcurs(1](0]==4)

curlocat(12,301s

colrprts(“No Records Selected",FOREGRND,BACKGRND);

goto closes

slse

srrrpticurs(0],4)y

goto close)

263

v

Ly

s 0 "
" b _*

h R AR



/% Open a cursor for the expenss ¥/
/n  SELECT COST_FUN_NO, COST_CL_NO, MATERIAL
FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM EXPENSE) AND
COST_FUN_NQ = :CFNO AND COST_CL_NO = :CLNO */
if (oopenicurs(2],curs(01,~1,-1,-1,-1,-1) ||
osql3lcurs(2], selemat, -1) ||
odefin(curs(2], 1, 2cfno, sizeof cfno,
5, =1,-1,-1,-1,-1,-1,-1) |{
odefinicursi2], 2, &clno, sizeof clno,
5, =1,-1,-1,-1,-1,-1,-1) ||
odefin(cursi2], 3, &texp, sizeof exp,
5, =1,-1,-1,-1,-1,~-1,-1) ||
obndrvicurs(21,":CFNO",-1,8¢cfno,-1,1,-1,-1,-1,-1) (1

obndrvicurs(2],":CLNO",-1,%¢c1lnos-1,1,-1,-1,-1,-1))

errrpticurs{0]1,4))

goto closey

/% Retrieve the remaining records »/
lines 3 23
head(hdr )}

while (curs(11(0] !z &)

nlines = 0

strepy(line, cfno)y
strcatiline, e 1
strcatiline, clnols
strcat(line, " ")y

strcat(line, bud);

/% Retrieve the first address record %/
if (cexecicurs(21]) ||

ofetchicurs(2]))

264

SRSy 2% R VOO R Y, o RS



‘!
3
l‘h
T
)’
'
0y
if(curs(21(0)==24) ;
else &
'. W
errrpticurs{0l,4); ]
goto close)
£,
while (curs(2][0] 1= &) -3
<4
il y
streat{line, ¥ ") '
strcat(line, exp)y ,‘
if (stremp(line, " ") = 0) n
g
free(budgetinlinesl)s i
3 27
j = strien(linels r
A
budgetinlines] = calloc(j+l,1) '
strepy(budgetinlinesl, line)s )
o
nlines++s
‘-(
b
¢
ofetchicurs(2]); N |
,-..
;
/% Chack for a very large entry »/ e
-
if (nlines > 21) e
o
.
clscolor( FOREGRND ,BACKGRND ) 3 )
curlocat(12,24)} ';“*
I
colrprts( "moBHsHeEntry exceeds 20 lines", A
FOREGRND ,BACKGRND ) 3 -
curlocat(26¢,21)s :
colrprts{"Press any key to continue or Q@ to quit", T
FOREGRND ;BACKGRND )3 :}
-~
S
getkey( &j) a™
if ((j =3 'q') || (§J == *'Q*')) goto done} !
wn
265 "~
R
’
S
\'.
.
S
e G N Ty 4 F e Pt 2 Sl R R L e N B A B N R R L T NI ACNON NN ‘



WO N W

bl e e e

clscolor( FOREGRND ,BACKGRND )3
lines = 23

for (§j=03 j < nliness je+) printf(" /Zs n",budget(jl)s

/% Check for a full screen ®/

else if (lines ¢ nlines > 23)

curlocat(24,21))

colrpris("Press any key to continue or Q to quit"”,
FOREGRND ,BACKGRND ) )

getkey(&j)s

lines = 23

if ((j == 'q’) || (3 == *'Q*)) goto dones

clscolor( FOREGRND ,BACKGRND )

head(hdr )}y

/% Check for a full page ¥/

if (pflag && l(plines ¢ nlines) > 51))

plines = 03

i = (80 - strlenthdr))/2;

lprtff( )y

for (j=13 j <3 63 je+) lprtlf()y

for (j=1) j <= i) je++) lprtchar(0, ' ')y
lprtstrihdr)s

lprter( )y

lprtlf()s

lprtlf()y

/% Print the lines w/

for(j=03 j < nliness j++)

‘ i .. - n - - - .
O e b s o P T WA o S o e L P A R R TS T e S Tt e S e




-

Lo e aa m oa i

,,,,,,,,

4

curlocat(lines;10)s
colrprits(budgetl j 1, FOREGRND ,BACKGRND )3
if (pflag)

for (3213 j <= 93 j++) lprtchar(0,
lprtstribudgetl j1)3

lprter( )y

1prtlf( )y

plines+sy

lines+ss

lines++y

if (pflag)
lprtert )y
lprtlf( ),

Plings++)

ofetochicurs(l));

close:

curlocat! 26,20

colrprts(® Press a key to continue
FOREGRND ,BACKGRND ) 3

pausel )y

done :

/% Close the budget cursor »/
ocloselcursil])y

/% Free the budget array ¥/

fortiz0s i < 504 i++) freelibudgetlil),
if (pflag) lprtff( )y

setscmod( EIGHTY )3

'f'vl,'/ AR G A SRR AL LR N .r.-c .-r Y

L] I),

PRl

~

SRR
L)



border(BACKGRND )

clscolor( FOREGRND ,BACKGRND ) 3

ZHHHHHHEHHHBHHHHHHHHEHHHEHEHHBHEHHHEHHHHRHHHHHOBEBREBEHHNHL /

/" program mocuile getoth »/
" version 1.0 »/
b /n authors: Richard N. MWoodman ®/
' /% Michael F Rall »/
/% »/
/» »/
/% ®/
J /% Program last modified 20 January 1986 »/
/n »/

/% Purpose: Displays budget vs expense by cost function »/

/% cost class for other to date. »/
/% »/
/% Other modules called: SELOTH, SELEOTH »/
/% »/
l /% Called by: INDVDISP n/
: /7% *x/
/% »/
/% Files used: NONE »/
/" »/
/% »/
/% Local variables: cfno,clno,bud,exp 74
/% line-80-, *budget-100-, %calloc( )y »/
/% i» 3» pg» pflag, plines, lines, nlines »/
/% »/

/HHHHHHHHBHEEHBHHHHHEHHHEHHHHHHHHHHHHHHHEHEHHHEHHEHEEHEHEHHEHEE /

getothisaelect, hdr, curs)

char %sealect,

s#hdry

268




short cursl 1[32])

char
efrol5],
clnols1,
budl 201,

expl20]s

cher linel801, %budget(100], %calloc()s

int i, j, pg, pflag, plines, lines, nlines);

nlines = 0y

setscmod(EIGHTY )

clscolor( FOREGRND ,BACKGRND )3

border(BACKGRND )3

curlocat(12,23)s

for(i=0s i < 503 i++) budgetlil] = calloc(1,1)3

colrpris("Do you want printed output (Y/N)?",FOREGRND,BACKGRND )}
if (getyesno(l))

/% Initislize the print variables */
pflag = 13

for (j=13 j <= 6) je++) lprtlf()y

for (j=l3 j <= 13 j++) lprtchar(0, ' ‘I3
lprtstrihdr)s

lprter( )y

lprtlf( )

lprtlf( ),

else pflag = 03

plines = 0)

clscolor( FOREGRND ,BACKGRND )3

/% Process the ORACLE request ¥/




L an on 3

T —

YR TY Y X A WOy ~

- Ty

vy

/% Open a curs for the budget »/
if (OOP.'I(G-IN[I])GUI‘S[O],"1,'1)'1,-1)'1)]

errrpticurs(01,4)3

goto close)

/% Retrieve the first record W/
/% SELECT COST_FUN_NO, COST =_CL_NO, OTHER
FROM BUDGET »/

if (osql3(cursi(l], select, -1) |[1i

odefinicurs-1-, 1, &cfno, sizeof cfrnos 55 -1,-15-1,~1,-1,-1,-1) ||

odefinlcurs~1-, 2, 8clno, sizeof clnos 55 =-1,-15-1,-1,-1,-1,-1) ||

odefinlcurs-1-, 3, C.3, sizeof bud, 5, -1,-1,-1,-1,-1,-1,-1) ||
oexeclcurs(1]) ||

ofetchicurs(11))

iftcursl{1}{0]=24)

curlocat(12,30))
colrpris(“No Records Selected",FOREGRND,BACKGRND )}

goto closes

else

errrpticurs{01,4);

goto close)

/% Open a cursor for the expense %/
/% SELECT COST_FUN_NO, COST_CL_NO, OTHER
FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM EXPENSE) AND
COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO »/
if (oopenicursi2]l,curs(0],-1,-1,-1,-1,-1) |[|

osql3lcurs(2], seleoth, -1) ||

270

v—,".’ *n -'.v{ Y] ‘F"I '.._n-’f’:,"&{.‘. Fd ’\f\.( ‘ “ “f Ly . ) "g'-\"'\','-'-.:-'-I'-(\..'o-—'-.'

5% &



T N T I T T T T O O R IO U T R R T RS T O O R R R I R AP TUS RO RO R O ROV R XN AU BNV R URU RU WL

odefintcursi2], 1, 2cfno, sizeof cfno,
By =1,-1,-1,-1,-1,-1,-1) ||

odefintcursl2], 2, %clno, sizeof clno,
5y =1,=15-1,-1,~-1,-1,-1) ||

odefinlcurs(2], 3, texp, sizeof exp, .
5, =1,=15-1,-1,-1,-1,-1) {|

obndrvicursl21,":CFN0",-1,8cfn0,~1,1,~15-1,-1,-1) ||

obndrvicurs{2],":CLNO",~1,8clno,-1,1,-15-1,-1,-1))

errrpticurs(01,4);

goto closes

/% Retrieve the remeining records %/
lines = 23 ‘
headlhdr)j

while (curs(l11{0] 'z 4)

nlines = 0y )
strcpy(line, cfno)y ;
strcat(line, " ")y X
streat(line, clnolsy
strcat(line, * )3 N

streat(line, bud)s

/% Retrieve the first address record #/
if (ocexec(curs(2]) (1!

ofetchicursi(2]))

ifleursl21l0l==¢) :

else

arrrpticurs(01,4);

goto closes

271

L



Ty B ety e 3 b 8T s Ea B e B 3 Tas i h TP iRl i AN O e B faB 8 R R 0 e e i Val iaf af PaB Caf Ga¥ “af g¥ Fad Sub tat Yal cat Yok gl cat ‘ol vad iaf ‘ol vad ‘sl ‘al ‘el ’ _“_‘,,(.:
"

]

“

.:‘

while (cursl2ll0] !'s 4) <
[
streat(line, * ")) ;r
strcat(line, @@l '

if (strcmp(line, * ") 1= Q) >
.

free(budgetinlines])s ,‘

j = strlen(line)s :
budgetinlines] = calloc(3+1,1)y :
strepy(budgetinlines], line)s 34

nlines++s

.
vy

&

ofetchicursi2])s ::.E
3

/% Check for a very large entry %/ 2
if (nlines > 21)
A

clscolor( FOREGRND ,BACKGRND )3 ) 5
curlocat(12,241) %
colrprts( " HeHBsEntry exceeds 20 lines", E.
FOREGRND ,BACKGRND ) 3 )
curlocat(24,21)3 :x
colrprts("Press any Key to continue or Q@ to quit”, :E
FOREGRND ,BACKGRND )y \
getkey( &3 f'

if (1) 3% 'q') || (§ == 'Q")) yoto done) X .
clscolor( FOREGRND ,BACKGRND )3 ;‘
lines = 2y E.

for (3=03 J < nliness j++) printf(" /s n",budgetl jl) ;

-

5

/% Check for a full screen »/

;-

< !

272

PR

Y
“~
.




olse if (lines + nlines > 23)

curlocat(24,21)3

colrprts("Press any Key to continue or @ to quit”,
FOREGRND ,BACKGRND )

getkey(3j)s

lines = 2y

if (13 == 'q') ] (] == 'Q")) goto dones

clscolor( FOREGRND ,BACKGRND )3

head(hdr)}s

/% Check for a full page »/

if (pflag 82 ((plines + nlines) > 51))

plines = 03

i 2 (80 - strlenthdr)i/2y

lprtff()s

for (3313 § <= 6) j++) lprtlf()y

for (3=1) 3 <= i3 je+) lprtcher(O, ' *)
lprtstrihdr)y

lprteri )y

lprtlf()s

lprtlf( )y

/% Print the lines %/

for(jz0) j < nliness j+¢)

curlocat(lines,10);

colrprts(budget! j],FOREGRND ,BACKGRND )}
if (pflag)

for (3=13 J <= 94 je¢) lprtchart0, ' ')y
lprtstribudget( il

lprter( )y

-
-
»
AR T L W ML LT LR N P T R P N S R S S S R R T T NN
k{ R ¥ - T T T L a T T T T vyt e R e A T W SR N N N A

e,




lprtlf( )

plines+es

lines++)

lines++¢y

if (pflag)

lprter( )y
lprtlf( )y

plines+s;

ofetchicursill])y

close:

curlocat(24,20)

colrprts(® Press a Key to continue
FOREGRND , BACKGRND )3

pausel )y

done:

/% Close the budget cursor »*/
oclose(curs{1])y

/% Free the budget array »/

for(iz0y i < 50y i++) free(budgetiil)
if (pflag) lprtffi))

setscmod( EIGHTY )

border( BACKGRND 13

clscolor( FOREGRND ;BACKGRND ))

/HHHHHEHHHHHEHE U SISO /

274




"
’~” program mocdule getsum »/ y
/n version 1.0 »/ :
Vi suthors: Richard N. Woodman »/
/™ Micheel F Rall »/ :
Ve ] »/ <
/% »/
™ */ -
/n Program last modified 20 January 1986 »/
,n »/
/% Purposs: Displays budget vs expenze totsl »/ )
/% to date. »*/
/" »/ :
.
/% Other modules called: SELSUM, SELSUMA »/ N
’n »/
/% Called by: TOBUDEXP »/
/% »/ .:.
’n %/ N
/% Files used: NONE »/ R
/% Files created : bud,grafl L 74
7% »/ '
/% Local variables: cfno,dte, bud,exp »/
’n line-80-, *budget-100-, *calloc( )3 »/ .
/% i» 3, pg> pflag, plines, lines, nliness »/ y
o »/ 2]
ZHHHHEHHEHHHHHHEHHEHHEHHHHHHHHHHHHHEBHHHHEHHOHHEEHEOHEE :
getsum(select, hdr, curs) -
char %select, .
*hdry :
short cursl 113213 3
char ‘\:
cfrol 51, =
dte(101, A
budl 151, '
275 X
"
.
:
I O O A R A B




epllisly

char line(801], *budget{100], %calloc()s

int i, j, pg» pflag, gflag, plines, lines, nlines:

nlines = 03

setscmod(EIGHTY )

clscolor{ FOREGRND ,BACKGRND }3

border(BACKGRND )3

curlocat(12,23)s

for(i=0) i < 503 i++) budgetlil = calloc(1,1];

colrprts("Do you want printed output (Y “1)?",FOREGRND ,BACKGRND )}

if (getyesno(l))

/% Initialize the print variables %/
pflag = 1

for (3313 j <= 63 je+) lprtlfl)y

for (j=13 j <= 1; j++) lprtchar(0, ' '),
lprtstrihdr)s

lprtcr( )y

lprtlf( )y

lprtlf( )y

else pflag = 0y

plines = 03

/" Initialize the graph variable %/
curlocat(14,23)3

colrprts( "Graph Output (Y/N)?",FOREGRND,BACKGRND )}
if (getyesno(l)) gflag = 1}

ealse gflag = 03

clscolor( FOREGRND ,BACKGRND ) 3
/% Process the ORACLE request »*/

/% Open a cursor for the budget »/



oy

2O, W VR Vet Saf Nt et At Tal Vat fou et ‘el tad Yat tal et Tt Vel el vat Pk %z@ ol ta9 Yof Ya@ Sat say Ta¥ fab Taf tal tat Tat el o tat fal el vty ety

if (oopentcursl(l],curs(0),-1,-1,-1,-1,-1))

errrpticurs(01,4)s

goto closes

/% Retrieve the first record %/
/% SELECT SUM(LABOR)+SUM(MATERIAL )+SUM(OTHER)
FROM BUDGET WHERE COST_FUN_NO < '9200' %/

if (osql3(cursil], select, -1} ||
odafinlcurs-1-, 1, c.3, sizeof bud, 5, =15-1,-1,-1,-1,-1,-1) ||
oexeclcurs(1]) ||

ofetchlicurs{1]))

iflcurs(11(0]=z=4)

curlocat(12,3013

colrpris(”No Records Selected",FOREGRND,BACKGRND)})

goto close)

else

errrpticurs(0],4),

goto closes

/% Open s cursor for the expense %/
/% SELECT SUM(LABOR )}+SUM(MATERIAL }+SUM(OTHER), OT

FROM EXPENSE

WNHERE COST_FUN_NO = :COST_FUN_NO GROUP BY DT/

if (oopenicursi2],cursiol,-1,-1,-1,-1,-1) ||

’\."ﬁ Y% ] Wm

.

osql3icurs(2], selsuma, -1) ||
odefinicurs{2], 1, texp, sizeof exp,
51 '1"1,‘1"1;'11‘1,‘1‘ ||

odefintcurs(2], 2, &dte, sizeof dte,

277

N e WY ~

" AT N N AL A IO SN SR AN ‘.(C-‘.'I:'.(;:‘.-‘-- AR

pig e s,

e

i

---- .
P N BT

[
)

O

[4
h]

)

S 1

; h :\-:v‘; .',-y' :."‘ -(‘

b2y 4yl S

NSENT Y

o
. e

LIRSV o o
M e«

Z ‘{&{ ‘r’ <

S

'I""" -,

s

4 .
%



55 =15-1y=1,-1,-1,-1,~-1} )

errrpticurs(0),4);

goto closes

/% Retrieve the remaining records */
lines = 23

headthdr )}

while (cursillio] !z 4)

nlines = 03

strepyfline, bud)s

if (strcmp(line, * ") = 0)

free(budgetinlines])s

j = strlentline)s
budgetinlines] = calloc(j+l,1)
strepy(budgetinlinesl, line)s
if (gflag =3 1) writefb(line)s

nlines++;

/% Retrieve the first expense record %/
if (oexaecl(cursi2]) ||

ofetchlicurs{2])}

iflcurs(21(0l==4) ;

else

errrpticursi0],4)3

goto close)

e

. "

BRI

Y

'l";.-“.'_-'

e




/% Check for a full screen %/

else if (lines + nlines > 23)

curlocat(24,21)

colrprts("Press any Key to continue or @ to quit",
FOREGRND ,BACKGRND ) 3

getkey(&j)s

lines = 2y

if ((j 3= 'q') Il (j == 'Q')) goto done}

clscolor{ FOREGRND ,BACKGRND )}

head(hdr )}

/% Chack for a full page */

if (pflag 22 ((plines + nlines) > 51))

plines = 03

i = (80 - strlen(hdr))/2s

lprtff( )y

for (3=13 j <= 63 j++) lprtlf()s

for (3=13 3 <= i3 j++) lprtchar(0, ' ')
lprtstrihdr)s

lprtcrt )

lprtlft )y

lprtlf( )y

/% Print the lines %/

for(3=03 3 < nlines; j++)

curlocat(lines,10)3
colrprts{budget{ j1,FOREGRND,BACKGRND }3

if (pflag)

for (3z13 j <= 93 j++) lprtchart0, ' ')

280

| C 2 O e Oy " Ea YN : N R BRI RS R [ L T A i
_!.\ ,".". '\'(\'-.(‘\f\ -' -'-. e .-"._ S " \f._'"\"."’-"’..- Wt LR DR ST ‘o R RN

b gu Tou 2 B Bn Sl vy » RV _N_E_.

_\"fn‘-"l

A

o

.\' .l' { ‘

oy

« % v .
"

» e ¥
Ll Ll

CUSRRS,

LIS SE SR SR IR
1, N
e

;f.

.

S T e Y g g P

‘. .' " ‘ﬁ .'

Y
x .

P

»
» s
-~ g



B o ot T T T T

lprtstribudgetl j])}
lprtcr( )
lprtlf()y

plines++y

lines++s

linege+e;

if (pflag)

lprter()y

lprtlf()s

plinese++y

if (gflag == 1)

i = execute2("d:lyonsé.exa","lyonsé"))

ofetchicursil])s

close:

curlocat({ 24,20

colrprts(" Press a key to continue
FOREGRND ,BACKGRND }3

pausal )y

done:

/7% Close the budget cursor »/
ocloselcurs{l]),

/% Free the budget array %/

for(i=03 i < B0y i++) freelbudgetliil)
if (pflag) lprtff()s

setscmod( EIGHTY )y

281

AR I #ﬂﬁ*kfx- A P N ’Yﬂh‘

o p_t_”

. - RGN
p..:nm-hum y r_A}u_ AA\u. lAL-‘l .m.,.

a3 s 21 W o 2"a"2"2"2"2



WMWWJMW.“T»T.WJWMMW“

border{BACKGRND )}

clscolor( FOREGRND ,BACKGRND )3

3. ORCAINP
static char selfunl]= "SELECT COST_CL_NO, OTLABOR+STLABOR,
MATERIAL, OTHER

FROM BUDGET WHERE COST_FUN_NO = " 3

static char selsuml]= "SELECT SUM{OTLABOR)+SUM(STLABOR)+
SUM(MATERIAL }+SUM(OTHER)

FROM BUDGET ™ 3

static char selsumall= "SELECT SUM(STLABOR)+SUM(OTLABOR)+
SUM(MATERIAL )+SUM(OTHER ) 0T

FROM EXPENSE GROUP BY DT ™

static char selcls(]= "SELECT SUM(OTLABOR }+SUM{STLABOR)+
SUM(MATERIAL }+SUM(OTHER)
FROM BUDGET WHERE COST_CL_NO = “

static char selfunel ]= "SELECT SUM(OTLABOR )+SUM(STLABOR)+
SUMIMATERIAL )+SUM{OTHER )

FROM EXPENSE WHERE COST_FUN_NO = " 3

static char selclsel ]z “SELECT SUM(OTLABOR)+SUM(STLABOR )+
SUM(MATERIAL }+SUM(OTHER)

FROM EXPENSE WHERE COST_CL_NO = " 3

static char seltotel 1= “SELECT SUM(OTLABOR)+SUM(STLABOR)+
SUM(MATERTAL )4SUMIQTHER)

FROM EXPENSE™

static char selefunl ]= "SELECT COST_FUN_NO,SUM(OTLABOR )+
SUM(STLABOR ) +SUMIMATERIAL )+SUM(OTHER)
FROM EXPENSE WHERE DT = (SELECT MAX(OT) FROM EXPENSE

AND COST_FUN_NO = :cfrno GROUP BY COST_FUN_NO"

282

R B S T S R Y T e R I IR R At g I AP
L. ) p I S e R e R R N L A L - - . A,
oy Y _f,'.,):.{bf.fld:& _\.:'{.‘.'1 -‘;:{‘n A R N R T T e A R I AR DR D M-P:'J'} -K.'it. I:xt‘:' n"tn':' A A A A



n o ha@ 0.9 b2t Tat an ai g gb et h pts Bire st i gt i

static char selecll]= “SELECT COST_CL_NO,SUM{OTLABOR)+
SUM(STLABOR )+SUM{MATERIAL )+SUM(OTHER)
FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM EXPENSE)

AND COST_CL_NO = :clno GROUP BY COST_CL_NO"

static char selbfunl 1= "SELECT COST_FUN_NO, SUM(OTLABOR)+
SUM(STLABOR J+SUM(MATERIAL )+SUM(OTHER)
FROM BUDGET GROUP BY COST_FUN_NO“ 3

static char selbcl{]= "SELECT COST_CL_NO, SUM(OTLABOR)+
SUM(STLABOR ) +SUM{ MATERTAL }+SUM(OTHER)

FROM BUDGET GROUP BY COST_CL_ 0"

static char selbcfcll J= “SELECT COST_FUN_NO, COST_CL_NO,
OTLABOR+STLABOR+MATERIAL+OTHER
FROM BUDGET WHERE OTLABOR != 0 OR STLABOR != 0 OR
MATERTIAL != 0 OR OTHER != 0" 3

static char selecfcll ]= "SELECT COST_FUN_NO, COST_CL_NO,
OTLABOR+STLABOR+MATERIAL+OTHER FROM EXPENSE
NHERE OT = (SELECT MAX(DYT) FROM EXPENSE) AND
(OTLABOR '= 0 OR STLABOR != 0 OR MATERIAL != 0 OR OTHER !z 0}

AND COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO" 3

static char selhourl ]= “SELECT COST_FUN_NO, COST_CL_NO,
OTHOURS +STHOURS

FROM BUDGET " 3

static char sellabl ]z “SELECT COST_FUN_NO, COST_CL_NO,
OTLABOR+STLABOR

FROM BUDGET "

static char selmatl]= "SELECT COST_FUN_NO, COST_CL_NO, MATERIAL

FROM BUDGET " 3

static char selothl]= "“SELECT COST_FUN_NO, COST_CL_NO, OTHER

FROM BUDGET "
static char selehourl ]z "SELECT COST_FUN_NGQ, COST_CL_NO,

283



D S gu o L

Yeooin WYa gVh nle a%g %

static char selelabl )= "SELECT COST_FUN_NO, COST_CL_NO,

static char selematl 1= “SELECT COST_FUN_NO, COST_CL_NO,

static char seleothl 1z "SELECT COST_FUN_NO, COST_CL_NO,

4.

OTHOURS +STHOURS

FROM EXPENSE WHERE OT = (SELECT MAX(DT) FROM

COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO "

OTLABOR+STHOURS

FROM EXPENSE WHERE OT = (SELECT MAX(DT) FROM

COST_FUN_ND = :CFNO AND COST_CL_NG = :CLNO ™

FROM EXPENSE WHERE DT = (SELECT MAX(DT) FROM

COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO "

FROM EXPENSE WHERE OT = (SELECT MAX(DT) FROM

COST_FUN_NO = :CFNO AND COST_CL_NO = :CLNO "

BAR.C

EXPENSE ) AND

EXPENSE ) AND

MATERIAL

EXPENSE ) AND

OTHER

EXPENSE ) AND

/MHBHHHEHEHHHHEHHEHEHREHHHEBHHHHHEHHHHBHHHHHHEHEHEHHHHBEHHHL/

/%
Vs
V)
/%
/%
/%
/%
/%
/%
/»
/%,
/%
/%
/%
/%
/%
/n

/%

program module Bar.c
version 1.0
authors: Richard N. Woodman

Michael F Rall

Program last modified 20 January 1986

This program was produced on an IBM clone using
00S 3.1. MHWritten with the C programming language,

utilizing the GraphiC utility software.

This is called directly from DOS after the PROJ

system has been processed. This module produces a

single bar graph, representing the budget of each cost

center.

Files used: GRAF

284

®/

»/

®/

»/

»/

»/

»/

®/

»/

*/

L 74

*/

*/

»/

*/

*/

»/

®/




P

C’3

/% External Calls: None »/
4 »/

/IHHBHHEHHHHEHHEHHEHHEHHEHHHHHEHHBHHEHHEHHEHEHHHHHHHHHHHEHOHE /

#include "stdio.h"
#include “graphics.h"

int _stack = 600003

main(argc argv)
int arges
char ¥argv()}

/% begin main */

FILE #infile, soutfile, %fopen( )

/% Declare variables »/
char month(3), filename(30), name(4)s
float cost, x1(14),x2(14),y1(14),x{301), y(301), 2(301)}
float a(301), b(143, c(301), d(301)3

int ¢f, flag, i, count, nxdiv, nydiv, npts;

long gettime()s

float budget, budgetl, budget2, z1(13), w, wl}
.pa
struct strlab /» begin Needed for string labels. »/

int flags

TaveTa & A

char s1(10)s
char s2(10)3
char s3(10)3
char $4(10)s
char s5(10)}
char $6(10)3
char 37(10)3
char s8(10);

;] char s9(10)3

285

I R L T T T T T T L A A L T G L)
T S O B A P o A sy R R A A A A A A A S A - T L VT

P G
SN

A O



v char $10(10))
\ char s11(10)3
: char $12(10)3
. ) char 313(10)3
;3 char $14(1013
:: 3 /% end Needed for string labels. %/
: #if Cclq /% Some CI86 cowpilers won't accept the simpler form. %/
! static struct strlab xstring)
:'. xstring. flag=1l;
P strepy(xstring.sl," 310112" )3
strepyixstring.s2," 310113")s
:' strepy(xstring.s3," 310114")3
- strepy(xstring.s4,” 310115")
E strepy(xstring.s5," 310116")3
‘ strepy(xstring.s6," 310117");
v strepyixstring.s7," 310118%1)
; strepy(xstring.s8," 310119")3
d stropy(xstring.s9,” 310112");
strepy(xstring.sl0," 310113"))
N feolse
., static struct strlab xstring = /% begin »/
: 1,"*," 310112"," 310113"," 310114"“," 310115"
» " 310116",' 310117"," 310118"," 310119","*
N Bendi?
: strepyl filename, "graf" )y
- if ((infile = fopen(filensme,"r")) == NULL)
4 printf("Sorry, cannot open 3", filename)s
return)
§
K}
< for(i=0sicz9yise)
:
v
: alil=0y
' blil=0y
|

286

/Y A R% 4 A WS,

J" n'f_'-?.)';'.r—'-‘\)'.\*:'f“ ST \'r-.._\.._-..._'-pf\‘ At .\.(_'\ SRV TS P e I .'_'..'_‘. N -..'_\‘.




clil=03
dlil=0s

count 3 0)
-pa

while ((flag = facanflinfile, "/Zd/fZf", C.7,3cost,2budgetl)) != EOF)

/% begin while L 74
slcount] = cost/10003 7% cost 74
clcount] = budgetl/10003 /% cost function budget »/

dicount] = (budgetl/cost)/10003 /% cost function budget »/
counteey /%  increment count */

/% end while »/
fcloselinfilels

/% These are the strings. »/
settime( ) /% Start timing of run. »/
bgnplot(l,'g’'»"lyons8. tkf" )y /% Initialize plot. Graphic mode */

startplot( )y

/% Change to simplex Greek and math »/
font{4,"simplex. fnt",*' 310°',"duplex.fnt",*' 311',"complex. fnt"

s 312%,"simgrma. fnt”,' 313*),

xlab( &xstring)s /% Turn on string labels */
cross(0);

color(0)}

physor(0.0,0.0)s /%RESET DEFAULT ORIGIN¢/
page(9.0,6.855),

area2d(7.5,6.5)

nxdiv=83 /% Desired # of x-axis divisions */
nydiv=6} /% Desired # of y-axis divisions »/
npts=8) /% Number of points in x and y vectors %/

for(i=0ji<countsi++) blilz(floatllisel)y

color(é)s

grid(2)s /% Put fine dotted grid on plot »/

287




/% Files used: GRAF1, BUD »/

Vs »/
/% Externel Calls: None ®/
7% »/

8include “stdio.h"
$include "graphics.h"

int _stack = 600003

main(arge,argv)
int arges
char dargv()s

/% begin main */

FILE ®infile, doutfile, %fopeni))

/% Declare variables */
char month(9), filename(30}, name(4)s
float cost, x1(14),%x2114),y1(16),x{301), y(301)}, z(301))
float a(301), b(14), c(301), d(301)}
int counts,cf, flag, i, count, nxdiv, nydiv, npts, npty
long gettimel( )
float newbudgat,budget, budgetl, budget2, z1(13), ws wl)
-pa
struct labstra /% begin Needed for string labels. »*/
int flags
char s1(10)}
char s2(10)s
char $3(10)%
char $4(10))
- char s5(10)3
char $6(10)3
char 37(10)3

char 38(10)3

289

E.";-‘;;'; R



ISR Eaf o taf vait \ VEVIVRANYERESAT ¢ 4 ] RV TSI ) 23 avg" ’\""1‘.‘ 3 v, ‘e @ te §

char 89(103)
char 310(10)})
char s11(10)s
char s12(10)3
char s13(10)s
char s14(10)s

s /% end Needed for string labels. »*/
#if CIQ /% Some CI86 compilers won't accept the simpler form. %/
static struct labstir mstring)
nstring. flag=1;
strepy(nstring.sl," 3100CT" ),
strepyinstring.s2," 310NOV" ),
strepy(nstring.s3," 310DEC")s
strcpylinstring.s4,"” 310JAN"))
strepyinstring.s5," 310FEB"))
strepy(nstring.s6," 310MAR" 1
strepy(nstring.s7," 310APR");
strepylnstring.s8," 310MAY"))
strepy(nstring.s9,” 310JUN")3
strepyinstring.sl0," 310JUL")
strepy(nstring.sll,” 310AUG")s
strepy(nstring.sl2,” 310SEP“ )
strepytnstring.sl3," 3100CT")y

strecpyinstring.sl4,” 310NOV" )3

#else
static struct labstra nstring = /% begin »/
1,""," 3100CT"," 310NOV'," 310DEC"," 310JAN", " 310FEB"
»" 310MAR"," 310APR™," 310MAY",“ 310JUN"," 310JUL"
»" 310AUG"," 3I10SEP",“"
Rendi f

strepyl( filenama,"bud" )}

if (linfile = fopen(filename,"r")) =z NULL)

printf("Sorry, cannot open 7s", filename)s

290

£ 0 5 _s_°"_ 0

e v 8.



RN AN R AR AT UL ATUR K R R AR A RN T PRI A

returny

for(i=z0siczlyiee}

x[il=0}
ylil=03

2(il=0

pa
flag = fscanflinfile, "/Zf",2budget);
newbudget = (budget)/10003 /% budget »/

fclosal infile)y

w203

for(izlgic=133ie+)

ylils(newbudget/12)+w3
w=( newbudget/12 } 4w}

strepy( filename,"grafl" )

if ((infile = fopen(filename,”"r")) =z NULL)

printf({"Sorry, carnot open /3", filerame))

returns

wl=0})
count = 13

while ((flag = fscanf(infile, "/f/s",8cost,imonth)) !'= EOF)

2lcount) = (costewl)/1000;3 /% cost W/
wlz=(cost)+wl}y

count++y /%  increment count ¥/

/% end while »/

-
v
-
s

A oy

NS

-
»
Ll

‘n{){ ).-‘ ‘}

t% 5{) (

_,_,‘,-.
2l L

Y" Vs '.. >

[N

Yt

D
A

EAXA

RS

{-{.
b

-

R
-3

S

o
4, 2y 'y

_,_ ,..,.,.
AR o

s

¢

T

. ..
NI B
n L6
A

»

X v
s e

.
Ly



Vet R et R R e e e R0 a8 e 0% g § U T R OY UYL a2t A% a¥aaVa"aY -l el et At talateh Al "alo sl alotal Sad el gl atotat b

;
l'|
!..
N
o
K
l.'
o fclose(infile)
"
/% begin full page line plot by itself »/
W,
ty
ﬁ. settime( )y /% Start timing of run. »/
[
) : bgrploti(l,'g’',"aplot.tkf")3 /% Initialize plot. Graphic mode %/
, ]
startplot(0)s
o /% Change to simplex Greek and math */
[)
1 font(4,"simplex. f1t",' 310',"duplex.fnt",' 311°
s"complex.fnt",' 312',"simgrma.fnt",' 313*')y
. xlabl &nstring)s /% Turn on string labels %/
f.
! cross(0);
o
. colort0]}s
>
v physor(0.0,0.0)3 /%RESET DEFAULT ORIGIN¥/
e page(9.0,6.855)3
’ area2d(7.5,6.0)
'
i box( )3 /% Draw a box around the plot %/
grid(2) /% Put fine dotted grid on plot #/
': fntchg( ' 310')y /% Changes fonts for the axes #*/
\
) for(i=13i<l3ise)
‘D
/% budget line =/
N x[il=(float)(i+l)y
=
" for(izlyi<=countyi++)
I'
“~ /% budget line »/
x1lil=(float)(iel)y
2
N
nxdiv=12y /% Desired # of x-axis divisions */ . i
. nydivzes) /% Desired # of divisions on linear axis %/ i
-. !
‘: npts = 123
') graf("",0.,1.,12.,"/4-1.0¢",0.,1.,10.))
»

nstring.flag=03 /% Turn off string label option %/

292




xlab(gnstring)) /% after axes have been drawn. »/
color(14)s

xrame( " 310End of Month")s /% Make labels %/
yname(" 310Millions");

heading(" 311Budget vs Expensas®)s

solid( )

color(10)s

pltfnt(9.5, 9.2, * 312110", .5, 0))

curve(x,y,npts,0)s /% Draw curve with no symbols %/
chndsh( )3 /% Use chain-dashed line for second curve %/
color(12)}

curvelxlsz,count,0)3 /% Plot second curve */

endplotl ) /% Terminate second plot »/

stopplot( )

/% ond main %/

. 6. COMBO.C
ZHHHBHHEHHHHHENHHBEHEHHHHHHHHHHHHHEHHHENHHENHUHHHHHEHHHEOEE/
/% program mocule Combo.c t 74

. /7 version 1.0 »/
/% authors: Richard N. HWoodman »/
/% Michael F Rall »/
/% */
/% Program last modified 20 Jamnuary 1986 */
/% */
/% This program was produced on an IBM clone using »/
/% DOS 3.1. MNWritten with the C programming language, t 74
/% utilizing the GraphicC utility software. */
/% »/
/% This is called directly from DOS after the PROJ »/

M /% system has been processed. This module produces a */
/% full pege line graph, with the solid line representing %/
/% the budgat and the broken line representing the »/
/% expenses, by the month Inset in the upper left hand »/

293

PR &‘.(‘_. - _‘..-.\_ «
-

D S Ca o R R
PRERSIL AL N 1S S e e T e e e e e N LT
Mmmﬁ‘{nrAlJ;flﬂ'pr:ng-f:‘.‘l‘.“‘-__‘._._‘“-&..“k — - e -

rﬂ!B!RIE!T'W7q'7IE!Y!?Y?!Y?YFYFV!YFK!t!Y!HJ?FY!‘FYHT’\xxxixiﬁixlntxlﬂtnthnxnlnlnnnnnnrHnnnwnnnnr\nnnn;wuvuvxwvvy

h 2

'..r- "r‘ '_ ’_

.,

A T L NN T TR I " o o 2 3 P SR 0N

- v . .
v e N .

‘."l-l-l-‘-.-l

C e e #



AD-A183 284 DSS (DECISION SUPPORT SVSTEH) DEVELOPHEIT EFFORTS L 4“4
THE MARE ISLAND NAVAL SHIPYARD(U) NA POS GRADURTE
SCHOOL MONTEREY CA M F RALL ET AL. ll

UNCLASSIFIED F/G 5/1




EEE

EEEE

FEEE

lle2

FEERER

4
14
(]

[
hi

I
F

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.1963-A




esrner in o single bar greph; redwad in size thet
plots the hudigst fer each cest center.

Files uned: GRAFY, BUD, GRAF

Exterral Calls: MNone

PN B I B B
T e 1 ¢ 2 ¢ ¢

Singlude “stdio.h”
Sinclude "grephics.h"”

int _stack = 600003

maind argo,argv)
int arge)
ohar %argvl )
/"  begin min w

FILE ®infile, woutfils, wfepent ))

/% Osclere verishles w/
cher month(9), filename(30), namel( sl
float bu 7 nevdnxiget,coet, »x1(16),x2(16)s
floet yl(14),x(301), y(301), =(301))
float a(301), b(14), ci301), H301)s
int counts,cf, flag, i, count, rwdiv, rydiv, rpts:
long gettime( ),
flost ocenter,een.budget,budgstl budget?,zl(13 ) seepeeld
-pe
struot strlab /% begin Nesded for string labels. W/
int flags
cher sl(10)
char s2(10)
cher 33(10))

char s4(10))




oher oBl10))
cher o6(10))
ehar s7(10))
aher o8(10))
char o910

shar 310116))
ahar 8lll19))
char o12(10)
cher s13(10))
dher s18(10))

’ /% erd Nosded fer string lebele. W/
8¢ CIQ /v Seme C186 cumpilers wen't sseept the simpler fera. w
statie struat strish ratring)
mtring. flagel)
strepyOrstring.el,” 310112% ),
strapytetring.s2,” 310113"))
strapyiratring.s3," 3101147 ),
strepy(ratring.ee,” 310118%))
streapytrmtring.e8,” 310116%),
strepyttring.o6,” 3101171,
streapyUrstring.s?,” 310118™ )
strepy( e tring.s8," 310119"),
strapy(xatring.s?,” 310112" ),
stropyi xetring.s10,” 310113™),

Selee
statis strunt etrish :etring » M bagin W
1,"%," 3161127," 310113%," 316114"," 310118"
»* 310116%," 310117"," 310118%," 310119, ,
Sorwii ¢

strust labstr /% bagin Neaded fer atring labels. w/
int flags
adwr el-10-

cmr 82-10-,

aer 23-10-,




e od-10-)
dur o5-10-)
dur 6-10-

ahor o716~}
dur 20-10-)
dur s9-10-)
dwer 18-10-)
dhar sll-10-)
ehor o12-10-;
dwr 813-10~)
aher slé-10-)

’ /% ond Nosdad fer etring labels. W

8¢ CIQ /v Sems C186¢ cospllers wen't scsept the sispler ferm. W

statie strust labatr metring
mtring. flagely

strepytms tring.sl,” 3100CT*),
strepylmetring.st,” 10NV )y
ostrapytastring.ss,” 31000C"))
strapyimstring.o8," 310JM0% )
strapytmatring.e8,” J107E8% ),
stropy(mstring.s6," J10MAR™ ),
strepytmstring.s?,” J10APR" ),
stropy(mstring. e, S10MAY™ )y
strepyimetring.s9,” 310AM");
strapytmetring.sld,” 310AA" )
strepytmstring.sll,” 310A8% )
strapyimstring.slt,.” 31008P" ),
strepytmstring.sls,.” 3100CT" )1,
strepyimstring.sle,” 31000V*),
Solse

statie strust labetr metring =

1,7"," B100CT™,” S10MOV™," 31004C~," 3110JAN"
»" J10PED%," J1OMAR"," S10APR™,~ J10MAY"
»" SIOABF," S10AN",” J10M8%," 31008P",""

/™ bagin W

296

A aar AN,



Sarald ¢

strepy! #i larame , "bud™ ))
if (tinfile = fepeni filename,"r")) ss MULL)
. /Mm bagin if w
printfi “Serry, carwvwt apen (s", fileneme))
return)
/™~ e ¢ W

foriingyicaljiee)

xnli1=0)
yiilegy
2t 1100,

flag * feeantl infile;, “X¢",Mnuiget))
nowbudget @ (iget)/1000) /7 budget "/

felosel infile )

")

for(in])icelsjiee)

y({ Is( nvibudgat/12 Yewy
we( nedbudgat/12 ) ey

strepy( i lorems, “grefl™ ),
1f ((infile = fopeni filereme,"r" )} == MAL)
/% pegin i¢ w/
printf( “Sorry, carret open Za", filerame )
return)
* /® ord if w

wleQy
osunt 8 1)

while ((flag » fesant(infile, “XfXs",8eset.dmenth]) s §OF !

297

A .

g A »
AR ARG WL AL e s W W R M



/M bagin wiile w
slennt) = (esetenl /10004 /M esst W

wisieset)onls
ommtes) /% {reremant emunt W/
/™ ond vihile w
felssnt infile ) .
strapyt 1 lerame,“gref* )
1f ((infile = fepard filervese,"r")) ss NALL)
/™ bagin I¢ w

printf( “Serry, cerret open As”, filenams))
returng
/n erd ¢ w

wl=0)
enmnts s 0y
wihile ((flag ® fesant(infile, "XfXFLF",Scanter, g, ieepn)) s EOF)
/n bagin wihrile (74
blesunts ] = (nuig)/1000) /M esst W
ommises) /" lreremant saunt W/ .
/m ord vihile w/
felese! infile s

settimel )3 /% Start timing of run. W
bgreletil, 'y’ ;"conibe. tht" 11/n Initislise plet. Greaphic mnde w»/

stertplet! )

/» Crargs %o sisplex Gresk ardd math s/
font(4,"simplex. fnt",’ 310°',"dplex. fnt",’ 311’
»"esmplex. fnt", ' 312°',"sisgres. nt”,* 313°' )
xlabi ixstring)s /% Turn en string lebels W/

oress(®))

esleri® )
pogeis.5,3.0278)
pgohiftt1.0,3.4278),

298




orestd(s.5,2.8))

reulivelés /% Desired 8 of x-exis divisions w/
rydivees /w Desired 8 of y-axis divisions w/
rptssl) /% Namber of points in X end y vesters W/
for(is0)icagsioe) alilu(flont)iiel),

eslerié )y

oridi2); /% Put fine detted grid en plot W

orof( " ,0.,1.,9.,°%-1.0¢",0.,1.,10. )3
wetring.flage®) /% Turn off string label eption w/
xlabi bcatring)s /% sfter asss hove been dramy. W/

eslert3)s

wussl” 312Cest Puwtion” s /» Labsl for n-axis w/
headingt * 3110UD8ET" )y /n Title of plot w/
yrane{ ™ S12Millions” ) /» Label fer y-exis w/
esleri2))

pltfntilz.8, 8.2, " 312110%, .8, Oy
barirewdiv,ab,rpts,2))
/m full page seserwl 1ire plet a/

/% Change %o sisplex Sresk ard math »/

font(4,"sinplex. int",' 310°',"duplan. fnt",’ 311°
s"complex. int”,' 312°',"simgras.nt",’' 313'),

ulahi dmatring )
oreast ),
esleri®))
shyeer(0.6,0.0); /"ARSET BEFALT ORISING/
pogel 9.0,6.088 )
oresid$.5,6.0))
boxi )y /7% Brem o box sreurd the plet w»/
oridie) /™ Pyt fine detied grid en plet w/
fntahgt ' 310°)) /8 Changae fents fer the swes W/
fortisliciSiioe)

. . N A Ace At an C 0
AOAOALAIADR A ML R RA v.'«‘.a\,: ,n“_\"‘» AR W .‘1.‘ ;'u.\‘. N, .‘1.. 4 ™ A s,




xlils(float)(iel)y

fori i=lsicoountiies)

/m budget »/
xilils(float)(iel)s

reedivel2; /% Desired 8 of x-sxis divisions W/
nydivag; /% Desired & of divisions on linser axis w/
rpts = 12y

gref(**,0.,1.,12.,"4~1.0",0.,2.,10.)
sstring. flag=0;
xlab( imstring)s
color(16))
camel(” 310€nd of Month”)s /% Make labels %/
yrame( ™ 310Millions”))y
ocolor(10)s
oarvelx,y,npts,0)3 /% Drew ourve with no symbols W/
chndeiv )y /% Use chain-dashed line for second ourve ¥/
eolor(12))
ourve! xl,z;count,0)i/n Plot second curve »/

endplot( )y /% Termirate seacond plot w»/
stopplot( )y /% Close files and quit w/
/n ond main w/

7. TRIPBAR.C

/MRS NN TN SIS IR /
/" program module TripBer.o L 74
” version 1.0 n/
/m” suthors: Richerd M. Moodmen w/ .
”m Micheel F Rell w/
/7n n/
™ Program last modified 20 Jarmmry 1906 »/ '
e ] w/
300

e T AN SN " AP AN P " AR SRS A N A N SRR,



This progras was produced on san IBM clone using
DOS 3.1. HNritten with the C programming languege,
utilizing the GraphicC utility software.

This is called directly from DOS after the PROJ
system has been processed. This module produces a
Triple bar graph. The middle bar represents the budget
for each cost center, left ber represents the expenses
and the right bar represents the percentage of the
budget expended.

Extermnal Calls: None

P B R B B A B A B

#$include "stdio.h"
Sinclude “graphics.h"

int _stack = 60000

min(args,argv)

int argos
cher *argv( )}

/% begin main w/
FILE »infile, doutfile, #fopent )

/% Declare variables »/
char month(3), fileneme(30), name(4)y
float cost, x1(14),%x2(14),y1(16),x(301), y(301), 2(301))
float 2(301), b(14), c(301), d(301)}
int cf, flag, i, count, rmcdiv, nydiv, nptss
long gettime( )
float budget, budgetl, budget2, z1(13), w, wl)

301

L A A ARSI

YN NSY

¥ C OV €V T Ve g O e,
TN A A B A M A A S ot v Wie

.
-._\



L . ~a T EYERE L TR, . TIPS TR 1 W P T 7% M < *0.‘:’“

struct xlsb /% begin Needed for string labels. %/

3
int flag ‘:
char sl(10)s
char s2(10)) . :

?
char $3(10); ::

)
char 84(10)s N

o ‘)
cher 85(10);

Y
char 36(10)3 .',.

‘l
char s7(10)) : o

Y
char 38(10)) "'
char 39(10);

"
char 3100101y | :

3 /% and Needed for string labels. #/ ::‘:
#1f CIQ /% Sowe CI86 compilers won't accept the simpler form. %/ "

static struct xlab xstrings

xstring. flagsls ‘
strepy(xstring.sl,” 310112")s - ‘:
strepyixstring.s2," 310113")) ?“.
strepyixstring.s3," 310114")s . ‘
stropy(xstring.s4,” 310115")s s
strepy(xstring.s5," 310116")) N
strepy(xstring.sé," 310117%)) .
strepy(xstring.s7," 310118%) .'
strepy(xstring.s8," 310119%)) i
stropy(xstring.s9,* 31011213 :I
strepy(xstring.s10," 310113") R
felse ‘
static struct xlab xstring = /% begin »/ E"
1,""," 310112"," 310113%," 310114"," 310115" :..
»" 310116"," 310117" ," 310118"," 310119","" ) |‘
Sendi ¢ - N
3

stropy( filename,"graf" )} ' i

h)

it (tinfile = fopen( filename,"r")) == NULL)

302

“
‘
)
o
N
%

O N AN I R AN A N AT A AN A A" N



/" begin if w i

'! s

printf(“Sorry, cannot open Zs", filename)s ::'.

Y

returny e,

/m end if W/ K]

o ":’
for(i=03ic<=93ies) 7‘:

oy,

. "
alil=0s s}

blil=0y !

~

olil=0} W
...’
dii]1=03 R,

count = 03 o

while ((flag = fscanflinfile, "Zd/§Zf", C.7,8udget,icost)) = EOF) N
/% begin while »/ o X

alcount] = cost/10003 /% cost »/
clecount] = budget/1000s /% cost function budget »/

- dlicount] = (cost/budget)/1003 /% cost function % of budget »/

e b

countes) /% increment count ¥/
- /" end vhile w7/ |=
)
fcloselinfile)s 5
. ]
7% These are the strings. %/ '
settime( )3 /% Start timing of run. ¥/ '
e
borelot(l, ‘g’ ,"tripbar. tkf'))/® Initialize plot. Graphic mode %/ 4
/% begin full psge bar plot »/ -
startplott(7); "
‘.I
/% Change to simplex Greek and math %/ ::_
font(4,"simplex. fnt",' 310°,"duplex.fnt",' 311° }_‘
- »"complex. fnt",* 312°',"simgree.fnt",*' 313'); ..
xlab(xstring)s /% Turn on string labels »/ )
« crossi0);
color(0)s -
G
WY
303 )
':

I KRN AN e e A L AR



R}
.

L

E N

physor(0.0,0.0)3 /%RESET DEFAULT ORIGIN®/

Pegel(92.0,6.855))

aree2d(7.5,6.0)3

box( )3 /% Oraw 8 box sround the plot »/
nxdiva2as /% Dasired % of x-axis divisions %/
nydiv=10) /% Desired 8 of y-sxis divisions »/
nptss8; /% Number of points in x and y vectors #/

for(i=03i<9s5iee) x1lil=( float)(i+l)s
for(i=03i<9s3i++) xlil=( float)(i+.75)
for({x03i<93iee) x2[il=(float)(iel.25))

color(6)s

grid(2)s /% Put fine dotted grid on plot »/
graf("",0.,1.,9.,"%4~1.0¥",0.,1.,10.)3

xstring. flag=03 /% Turn off string label option »/
xlab(&xstring)s /7% after axes have been drawn. »/
color({3)s

xname(” 312Cost Function™)s /% Label for x-axis »/
heading(™ 311BUDGET"); /% Title of plot »/
yreme(® 312Millions")s /% Label for y-axis »/
color(2)s

pltfnt(7.5, 10.2, " 310110, .5, O

bar(nxdiv,xl,anpts,2);
bar(nxdivs,x,c,npts,4)s

bar{nxdiv,x2,d,npts,5)}

endplot( )y /% Terminate first plot »/

stopplot( )y /% Close files and quit »/

/% ond main w/

304

e M K N u M

PR

»

OO IO

x> v

OO A MO g | AEAR™ L L] - A 1N N TN n*\J
':‘i"'t St 'i‘»‘l‘!‘h"‘\e‘l‘.'bl~'t‘g'l !.I'!'l JI .‘I‘!"l i -‘l. l‘x’. o o a7 t" S 0. & gt . MY Y .G.iiJi \“ |".l.".0. N ~ . \ " ..‘ \ ~ ¥ y } ™



- I

10.

I1.

12.

13.

14.

LIST OF REFERENCES

Keen, Peter G. W. and Michael S. Scott Morton Decision Support Systems: An
l(’)arlé"l?m(zlgul)g% Perspective, Addison-Wesley Publishing Company, Inc., Menlo

Sprague, Ralph H. and Eric D. Carlson Building Effective Decision Support
Sgstegms, Prentice-Hall, Inc., Englewood Cliffs, %J '7582.ffec ¢ - ppor

Yourdon, E,, Managirgg the Structured Techni%ues: Srategies for Software
Development in the 1990’s, Yourdon Press, NY, 1986.

Il)gq, 8Marco, T., Structured Analysis and System Specification, Yourdon Press, NY,

Management Analysis of the Navy Industrial Fund Program: Shipyard Review
Report Draft, Coopers and Lybrand, August 1983.

NAVSEA Navy Industrial Fund Financial Management Systems and Procedures
Manual, NAVSEAINST 760027, Washington, DG, Octaber 1985.

NAVCOMPT Manual, Washington, DC, 1985.

Davis, William System Analysis and Design: A Structured A h, Addison-
Wesley Publishing Co., Menlo Park, CA 1083, o red Approde

Ariav, Gad and Michael J. Ginzberg, "DSS Design: A systematic View of
Decision SupPort “ Decision Ma_kin%: An Interdisciplinary Inquiry, ed. Gerardo R.
Ungson, Kent Publishing Co., NY, 1982.

Huber, George P. “Decision Support Svstems: Their Present Nature and Future
Applications,” Decision Making: An [nterdisciplinary Inquiry, ed. Gerardo R.
Ungsun, Kent Publishing Co., NY, 1982.

Management_ Engineering and Information Office Mare Island Naval Shipyard
Information Resouce Management Plan, FY 87 Vol I, May 1986.

TEL-A-GRAFE User's Manual, Version 4.0, ISSCO, Integrated Software Systems
Corporation, San Diego, CA 1981.

Kroenke, D. M. Darabase Processing: Fundamentals, Design, Implementation,
Chicago, IL, SRA, Inc., 1983.

The CPL User's Guide IDR4302, Prime Computer, Inc., MASS, December 1980.

305

At S

< ;A’l" ) aFrAP Ll S
- WS % A Ay

2
-
-




1S.

p - ' : oF ) AN WU W Y a T
&‘f’l':‘l‘:‘l"- ~“'n','\ .‘l'e‘l.,‘l.!‘A N c‘..l' 8. -"A'. hu‘ J.'ulﬂ..\ D 0“\0“.0".0 K MY Koy X N

T-378-380 Prime Co

Shipyard, Code 380.1

",

6pt{ler Training Manual For the Beginner, Mare Island Naval

984.

16. Oracle User Manual (Vol 1), Oracle Corporation, Belmont, CA, 1983.

306

BT
» C) 1) O A

£ ©C e 0



INITIAL DISTRIBUTION LIST

No. Copies \

1. efense Technical Information Center 2
ameron Station
Alexandria, VA 22304-6145

2. nm Code gl};ttz chool 2
(4 ,

\donterey, g?oo :

3.  CSM, Code 0367 2 ;

Naval Postgraduate School
\rlonterey,& a9e43 5002

4. Lt M. F, Rall 2
Information Resource Management (IRM)

. Coast Guard \4LC 1E ast) !

overnors Island, NY 1 ,

\R R. N. Woodman 2

CMC Code TPI-64 .
 nited States Marine Co?s Headquarters
ashington, DC

6. nformation csource Vlanage"
ana egcg eering and Information Office !
ifejo. CA

\34 g Shipyard

307

o &‘.

RODAOAO .'M‘\‘.'.'h. -, ‘J‘ - ‘. . CRER L N .',7 V. .".-\1 -'-c ', '/'l PACAE A s .-z ;,- r.-\ff (o,.r nE







